PLASMA TAU Guide

Parallel Linear Algebra Software for Multicore Architectures
Version 2.0

Electrical Engineering and Computer Science
University of Tennessee

Electrical Engineering and Computer Science
University of California Berkeley

Mathematical & Statistical Sciences
University of Colorado Denver

Jack Dongarra
Joshua Hoffman

Jakub Kurzak

Contents
1 Introduction 1
2 Required Files 1
2.1 Downloads e 1
2.1.1 TAUandPDT. e 1
2.1.2 slog2rte and Jumpshot-4 oL 1
3 Forward General Reference 2
4 Setup and Installation 2
4.1 Environment Variables 3
42 BuildingPDT e 3
4.3 Buildingslog2sdk oL 4
44 Building TAU e 4
4.5 InstrumentingCode e 5
4.5.1 Select File Instrumentation 5
452 Compiling PLASMA withTAU 7
5 Using TAU 7
5.1 Trace Format Conversion v v v 8
5.2 Viewingslog2 Trace 8
6 Examples 10

1 Introduction

To better understand the scheduling and inner workings of PLASMA, profiles and function
traces can be used to see exactly what the PLASMA libraries are doing at any point during
execution. This document will guide the reader through installing TAU (Tuning and Anal-
ysis Utilities) from the University of Oregon, and how to instrument the PLASMA libraries
with the TAU tool.

2 Required Files

Two separate downloads are required for the TAU tools. The first is the TAU tool itself,
which is downloaded in a single tarball from the University of Oregon. Next, the tool used
to automatically instrument the source code, called the PDT (Program Database Toolkit),
can be downloaded from the same site. Finally, to view the slog2 traces, the Jumpshot-4
trace viewer is needed.

2.1 Downloads
All three downloads will be downloaded as tarball files, containing a root directory with

their own file trees. Each package will have more detailed installation instructions included,
supplementing the online documentation.

2.1.1 TAU and PDT
The TAU tools themselves, as well as the PDT, can both be downloaded from:
http://www.cs.uoregon.edu/research/tau/home.php

Near the top left corner, click download, fill out the short information form, then download
the latest version of TAU, as well as the PDT, located further down the page.

2.1.2 slog2rte and Jumpshot-4

It is recommended that the slog?2 trace format be used when gathering traces using TAU. To
generate the traces, no extra software, other than TAU and PDT, are required. However, to
view the traces, the Jumpshot-4 trace viewer is required. This guide assumes the use of the
slog2 format and Jumpshot-4 viewer. The Jumpshot-4 viewer can be downloaded from:

http://www.cs.uoregon.edu/research/tau/home.php

ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2rte.tar.gz

The viewer itself can be found in the folder (PATH_TO_SLOG?2)/slog2rte/lib, and is called
jumpshot.jar. A version of the java runtime environment is required to use Jumpshot. Fur-
thermore, the Jumpshot-4 viewer can be run on any system with a graphical user interface
and the java runtime environment installed.

3 Forward General Reference

Set environment variables:

$ export PATH=/path/to/tau/x86_64/bin:$PATH

$ export TAU MAKEFILE=/path/to/tau/x86_64/lib/Makefile.tau.pthread-pdt-trace
Edit your makefile and set: cc=tau_cc.sh; £90=tau_£90.sh; cxx=tau cxx.sh

Compile and link with TAU, PDT:

$ make

é . /your_tau_linked _program.out

é . 1.:au,treemerge

fis.i;au2slog2 tau.trc tau.edf -o <output>.slog2
Usmg the SLOG-2 Runtime:

$ java -jar /path/to/jumpshot/jumpshot.jar

4 Setup and Installation

The tools downloaded above will need to be built on a system with access to C/C++ com-
pilers, as well as a Java SDK and runtime environment. The required Java files can be
downloaded from:

http://java.sun.com/javase/downloads/index. jsp

Administrator or superuser access is not required to build or install the libraries. However,
before beginning installation make sure they are in a place in where your user account has
read/write/execute privileges. Also, before beginning installation, for both TAU and PDT
create directories separate from their respective installation directories.

ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2rte.tar.gz
http://java.sun.com/javase/downloads/index.jsp

4.1 Environment Variables

4.1 Environment Variables

The installation of the two packages and the Jumpshot-4 viewer require the modification of
several environment variables. First, the location of the Java jvm must be located and added
to the environment variable JAVA_HOME. For example:

export JAVA_HOME=/usr/lib/jvm/java-6-sun
Next, the path to the TAU and PDT tools must be added to the path, e.g.:
export PATH=$PATH:/home/user/pdt/x86_64/bin:/home/user/tau/x86_64/bin

Also, for some compilers (Intel, for example) the LD _LIBRARY PATH must be changed
to point to the location of your compiler’s libraries ((INTEL_COMPILER_ROQOT)/lib
for example). And finally, after the tools have been built and installed correctly, the
TAU_MAKEFILE environment variable will need to be created, pointing to the makefile
containing the proper TAU settings. This will be discussed more at the end of the TAU
installation section.

4.2 Building PDT

The PDT package is required for automatic instrumentation of source code to produce data
with the TAU library. After downloading and extracting the PDT code, navigate to the
extracted directory in the command line. The first step is to run the configure script in the
top level PDT directory. The various options for the configure script are detailed in the
README included with the PDT software, however three are worth noting here.

First, the configure script must be told which C++ compiler version to use via a command
line option. The PDT software supports 10 compiler packages, which are listed in the
README, however two of the more common ones are for the Intel package and the GNU
compilers; -icpc and -GNU, respectively. The next command line options are optional,
however using them will help keep everything organized. Using the -prefix=<dir> option
will allow you to specify a target directory for the installation instead of installing into the
source directories. Also, the -compdir=<name> will help keep the files organized. An
example command would look like:

./configure -icpc -prefix=/home/user/PDT -compdir=intel

After the configure script has been executed, run make, then make install, and the PDT tools
will be built and installed in the directory chosen above.

4.3 Building slog2sdk

4.3 Building slog2sdk

With the slog2 run time environment, nothing new needs to be built. All of the files come
as executable Java .jar files.

4.4 Building TAU

Configuring TAU is slightly more involved than building the PDT. Before running
the configure script for TAU, make sure the environment variables above (other than
TAU_MAKEFILE for now) are set. Also, know the location of the top level PDT direc-
tory. Finally, read the INSTALL file included in the extracted TAU files to get an idea of
which options best suit your needs.

The following command will configure TAU to produce slog?2 traces using Intel compilers
and install TAU into the directory pointed to by the -prefix=<directory> directory. Pro-
grams will be built using the pthreads threading library as well. Programs built with the
TAU compiler scripts will be automatically instrumented using the PDT built above.

./configure -pdt=/home/user/pdt -pdtcompdir=intel -cc=icc
-c++=icpc -fortran=intel -pthread -slog2 -TRACE - PROFILE
-prefix=/home/user/tau

Once the script has completed, run
make install

in the top level TAU directory, and upon successful completion, the TAU libraries will be
built and installed under your system’s architecture folder (x86_64 for example) in the di-
rectory specified by the -prefix= option. The only thing left is to set the TAU_MAKEFILE
environment variable. From the top level TAU installation directory, change directories
to the folder named after your system’s architecture, and then the lib directory. In the
lib directory, find the makefile which best describes the options used in the configure
script(e.g. Makefile.tau-icpc-pthread-pdt-profile-trace). Now, set the environment variable
TAU_MAKEFILE to the FULL PATH to this file, including file name.

In the directory pointed to by the -prefix= option above, a folder called ‘examples’ will
have been created as well. Inside are directories containing over 50 example programs and
makefiles to test the various functions of TAU. Refer to the file examples/README for a
detailed description of each example.

4.5 Instrumenting Code

4.5 Instrumenting Code

Once TAU and PDT are built and installed correctly, and the environment variables are set
properly, it is a good idea to run several tests before using the tools on complicated code.
In the top level of the TAU installation directory, there is an examples directory containing
over 50 different programs to test the tools on. Simply change directories to one of these
examples and run make to build the example. The pthreads TAU example is a good example
to start with. It will pause for 5 seconds during execution, so do not panic.

To instrument your own projects with TAU, your code will need to be compiled with the
compiler scripts created by TAU. For C files, the tau_cc.sh compiler should be used, and for
tau_f90.sh for FORTRAN. For simplicity, the compiler option inside your makefiles can be
changed to the necessary TAU compilers, and make can be run as usual. A simple makefile
might look like:

CcC = tau_cc.sh
INC = -I/home/user/intel/mkl/include
LIB = -mkl_em64t -lguide

LIBDIR = -L/home/user/intel/mkl/1ib/em64t

all:
$(cC) $(INC) $(LIBDIR) $(LIB) test.c -o test

Notice the makefile is a normal makefile, with just the compiler variable changed.

4.5.1 Select File Instrumentation

Because of the overhead associated with profiling with TAU, PLASMA performance will
suffer. However, this can be avoided by only tracing important functions, reducing the
performance hit caused by TAU. This can be done at compile time, by appending -
optTauSelectFile=<path_to_select_file>> to the TAU_OPTIONS environment variable. The
file pointed to by <path_to_select_file> is the select file PDT will use when instrumenting
the program.

Select files are a powerful tool, and only a brief overview of their capabilities will be dis-
cussed here. For more information regarding select files, refer to the TAU online documen-
tation.

The TAU select file tells PDT at compile time which functions to instrument and which
ones to skip. Not only that, but it can also specify entire files to skip or include.

The select file itself is a simple text file, with any file extension; however for convenience
this guide will refer to it as select.tau.

4.5 Instrumenting Code

Creating a select file is fairly simple; it consists of lists of files or functions to include or
exclude and the flags to mark the beginning or end of a list. To include or exclude files,
the lists are surrounded by: BEGIN_FILE_INCLUDE_LIST / END_FILE_INCLUDE_LIST
and BEGIN_FILE_EXCLUDE_LIST / END_FILE_EXCLUDE_LIST markers respectively.

To make selecting file easier, TAU supports the use of two wildcards (* and ?) in file
include/exclude lists. The first, *, matches any number of characters while ? only matches
one. Also, # can be used for comment lines. An example section of a select file which has
an exclude file list would look like:

BEGIN_FILE_EXCLUDE_LIST

exclude all files with a .f extension
* . f

exclude files beginning with main.
with a single letter file extension
main.?

END_FILE_EXCLUDE_LIST

Similarly, the function include/exclude lists are encased by BEGIN_INCLUDE_LIST /
END_INCLUDE_LIST and BEGIN_EXCLUDE_LIST / END_EXCLUDE_LIST markers,
respectively. The function include/exclude lists are slightly more difficult than the file lists
because the functions must have an argument type list as well as a return type. Also, if
using mixed FORTRAN and C code as in PLASMA, a capital letter ‘C’ is required at the
end of each function listing in the select file. Unlike the file lists above, the function lists
only have one wildcard symbol ‘#’. However, the wildcard only matches against function
names; a correct argument list and return type are still required. If used at the beginning of
the line, ‘# will still mark a commented line. For example, the following is a snippet from
a select file excluding several functions.

BEGIN_EXCLUDE_LIST

double get_current_time(void) C

the next line excludes all functions beginning with sort_
which return void and accept int *

void sort_#(int *) C

FORTRAN subroutines only require the name of the subroutine
CORE_DGESSM

END_EXCLUDE_LIST

Select file instrumentation also supports an instrument section, where specific func-
tions may be instrumented differently, as well as tracking different memory alloca-
tions/deallocations and loop specific instrumentation. However, these are beyond the scope
of this document; please refer to the TAU documentation for more information about select
file instrument sections.

4.5.2 Compiling PLASMA with TAU

To compile plasma with TAU, make sure the make.inc.example file is correctly renamed
‘make.inc’. Then, edit the make.inc file so that the lines

CcC = icc
FC = ifort
LINKER = ifort

are changed to

CcC = tau_cc.sh
FC = tau_f90.sh
LINKER = tau_£f90.sh

Also, ensure that the INC, LIB, and LIBDIR variables correspond to your BLAS. Then, run
make as usual. If the build is successful, test PLASMA and TAU using the files included in
the ‘testing’ directory.

S Using TAU

After the executables have been built using the TAU compilers and are properly instru-
mented, all that remains is to run the code on a sufficiently large data set, to gain a clear
picture of what the code is doing; for PLASMA code a matrix of at least 1000x1000 is
recommended.

To localize profile and trace output from TAU, two environment variables can be set to
point to a directory where the corresponding output will be dumped. It is recommended
to set a different output location for each program run, and for runs you wish to keep
separated; TAU output files will overwrite previous data. The two environment variables
are PROFILEDIR and TRACEDIR. Set these to their target directories, and TAU will
automatically put the output files here at run time.

5.1 Trace Format Conversion

2 T
| £ Jumpshot-4 o | [e |

File Edit View Help

LogName ; ||

ViewMap : | |=

[s]=l [Blal =] @6

Figure 1: Button to open file select dialog.

5.1 Trace Format Conversion

Once the code is finished executing, several files will be created in the current directory.
These files are events.0.edf, and tautrace.0.0.*.trc, where * is a specific processor number.
Each processor core used will have it’s own file created. Before these files can be converted
to slog2 format, they first must be merged into a single file. This is simply done by run-
ning tau_treemerge from the command line (assuming the PATH is set properly) in the
directory in which the files are located. This creates two new files, tau.edf and tau.trc. The
next step is to convert these two new files into slog2 format. Just run tau2slog2 tau.trc
tau.edf -o <output>.slog2 from the command line, where <output> is the desired
name of the trace file.

5.2 Viewing slog2 Trace

With the TAU trace converted to slog2 format, open the Jumpshot viewer by executing the
Java jar file, jumpshot.jar. Click the “Select new logfile” button in the bottom left hand
corner of the viewer (Figure 1), then navigate to the .slog2 file output by tau2slog2, click
it, and then select open in the dialog box. After choosing and opening the .slog?2 file, three
windows should appear (Figure 2).

Window 1 is where the trace will be displayed. Window 2 is the legend, where the colors
of the trace window are related to the functions traced in the program. Window 3 is the
Jumpshot viewer window, where a new file can be opened and Jumpshot options modified.

To view the function trace for each thread, find the “ViewMap” drop-down box on the
Jumpshot-4 viewer, then select Identity Map. This changes the trace window to show the
activity of each thread. The trace window should change to look like the one on Figure 3.

Depending on your program, this view might contain a large amount of information that can
be difficult to interpret. However, using the legend, extraneous functions can be removed
to give a clearer view of the important information. First, with the legend window active,
uncheck boxes in the ‘V’ column that correspond to functions to be removed (Figure 4).

5.2 Viewing slog2 Trace

c[E[=T}

File Edit View Help

Logame :[sPDocmentsPLASAcestie_oLsou 7.5 lauslos?

Viewhap: [Threadview =

al® =

[s core_bcesSGnt nt it i it
|void core_DGETRF(int,int, int, double *,int, int*,int *) C ifile_el you.c}{300,13-{306,13]
[l e o s et ==

alviy e (<[>] a BN 2 @

e i Vs B al i G m [~ o
EX

o
Cumutatvee .. | v | TimeLines -

*,int, double *, int) C [fle_el_you.c} {323,11-(334,11]

I e Time

Min Time View Init Time

Lowest/ Max. Deptn 4| 2oom Level G
0/0 Y 0.000000 0000000

[sLoc2

NI | | | :

I I I I
005 0 018 020 025 030 038

Lo

]

=
y Row96,Col 277 Page20f5

def auto

Figure 2: Trace window (1), legend window(2), and viewer window (3).

| &) TimeLine : tile_el_you_8k 8 tauslog2 <Identity Map> [E=E=A]
Al | B B> <) B D@
Lowest / Max. Depth) 4{Zoom Level Globkal Min Time View Init Time Zoom Focus Time | Time Global Max Time =
! ¥] 0.0000068 0.000008 0.235214 0.470422
Mo
[es5536
[131072
[19660
[} 262144
[y 32788
[} 303215
[y 458752
4] D
I | I I I [| | | | i—'
iU.UD 00s 010 018 nzo nzs 0.30 035 040 ;{"y ‘

LA |

Figure 3: Trace view window after Identity Map has been selected.

|| Legend : tile_el_you 8k 8 tauslog2 = B)

El
<8
Dl |

I:I Preview_5State

int main(int, char **) C [file_el_vou.c} {138, 1}-{284,1))

e
g2 8 =3
& 5 &
2 8 <
@ @ B
(Y
g8 n
4 w 8
a4 o g
4 2 8
s 3 2
2 2 2
2 3 8
g 3 =
Z2 32 3
T 5 2
g 2 B
- » v
® 3l
5 8 &
2 2 8
E-
S
2 3 5
2 a2
= 2o
Z £
T @
I =
% =
o 0
e B
T P
g g
I g
& o
= -
2 0
2 B

B

g

%

[

-
B B R
E B R

.
E
=4
5
3
3
1
o
o
@
@
@
=
El
ES
El
=
ES
s
g
2
=4
>
ES
e
g
2
=4
®
E
o
5
g
=
=
El
o
5
2
=4
=
=
ES
7
(e}
&
1
o
s
g
2
o
©
=
bl
@
2
Y
)

void core_DTSTRF(int, int, int, int, double *, int, double *, int, double =, int, int*, int *) C K{tile_el_you.c}{310,13-{319,1]]

3]
&

[l 1 »
B = e Tt |

Figure 4: The legend window. The arrow points to the checkboxes which can be used to
turn on and off displaying of individual functions.

e :tle_el_you_8k_8_tauslog2 <Identity Map>. I T [ESRR]
Halv@o o[<[> oalala ~ (w88 2=
Lowest / Max. Deptn 4[Zoom Level ‘Global Min Time. View Init Time Zoom Focus Time. View Final Time. Global Max Time. Time Per Pixel Hlrow | w|
I z e Jo.17ssoasorr o rzerios |sascamnsz (e Jo.cvozsssesr [< @ ==

| IR NI RR NN I TP T T

[T TTTTTTT T TT [T ITTTTTT T T AT AT [

JUTETETIO CTET

[T e e e e e T e T e [Ty T ey e
I [(T(T7T TVTTT7TT

Kl Ir]

Figure 5: Sample TAU trace of PLASMA tile LU factorization on 8 cores.

After unchecking the boxes in the legend window, the trace will still look the same. At

the top of the trace window, click the J button to refresh the trace. The trace window
should now resemble the two traces in the following examples section.

To produce a trace showing the work PLASMA is doing, only the functions and files in the
(PLASMA _DIR)/core_blas folder need to be traced.

6 Examples

Figures 5 and 6 show what a trace of PLASMA should look like. Both traces only include
the functions found in the (PLASMA _DIR)/core_blas directory, the main function and the
parallel_section function.

10

(2] Timeline : el you_16 1_zoot slog? <dentit Map> o ol Bowe L e

[aajma]~ e[aj @o(0

Lowest Max. Deptr| ¢ [Zoom Level Global Min Time View Init Time. Zoom Focus Time View Final Time Global Max Time. Time Pes el
Cyr | 1 Jo000007 Jo2030044c07 Jo.22s8c00e23 Jo.ss0rz2zac01 Jo.ssasa Jo.o003es 1020

oot |
=)

stoc2 (2

Do

D eseas T [T 1] M [T i
) 131074 RN [SRR T [T] [T
Ty ML T (T T e [T &

[202144 T [T I [T e
[2758 (I [(TR IS SRR (EETEE T
[30321 ST T T [RY[[[ATRIE[a] [[Taaliay [TTT [aTa]

[458753 ’V

[2428 " mm WEqEiEENES pEENEEREE Wi EEEE F []

[o624 - " TTIIIUTITIT TTTTTTI0T TTT07077T A [T =
[} ess3s: [ETET ST [TTTTTT g [TT [

[} 720891 N -5
[786433 (TEEEEmER R RE] [EEEN R [
[} es19s: | J
Dy or7s04 [E{HSR[RA[T T TTTITT 1T [T
[se304d| 1
R | <Dl
@Lned || : : Fian
al D} |<TiID]

Figure 6: Sample TAU trace of PLASMA tile LU factorization on 16 cores.

11

	Introduction
	Required Files
	Downloads
	TAU and PDT
	slog2rte and Jumpshot-4

	Forward General Reference
	Setup and Installation
	Environment Variables
	Building PDT
	Building slog2sdk
	Building TAU
	Instrumenting Code
	Select File Instrumentation
	Compiling PLASMA with TAU

	Using TAU
	Trace Format Conversion
	Viewing slog2 Trace

	Examples

