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Introduction 

Experienced parallel programmers know what they want from a parallel system.  They 

know how certain operations should perform and how overheads should scale for 

commonly encountered parallel operations.  In many cases, programmers can relate 

expected performance trends to one or more basic operations; allowing these operations 

to serve as proxies for full applications. 

We have collected a set of common low level operations into a research tool we call the 

parallel research kernels.  The parallel research kernels are a test suite to communicate 

the expectations of parallel application programmers to system designers.  They do not 

define a standard problem set or generate consistent performance numbers to rank 

different systems.  Hence, while some of the parallel research kernels are based on well-

known benchmarks, the test suite itself is not a benchmark. 

The parallel research kernels test suite is defined as a paper-and-pencil set of operations 

independent of implementation. It is supplemented with implementations in C (for 

portability) for execution as a serial computation and in parallel for multi-threaded shared 

memory systems (e.g. multicore processors) and message passing, distributed memory 

systems (e.g. clusters). For distributed memory programming we only consider the 

Message Passing Interface (MPI*). For shared memory programming we provide an 

OpenMP* implementation, but implementations based on PThreads
*
 are under 

consideration for future versions of the parallel research kernels.   

The set of parallel research kernels includes: 

1. Dense matrix transpose 

2. Vector reduction; regular memory access on read/write. 

3. Sparse matrix-vector multiplication; irregular memory access on read only 

4. Random access update; irregular memory access on both read and write 

5. Synchronization; global and point-to-point 

6. Stencil; regular strided memory access 

7. Atomic reference counting; shared and private. 

8. Scaled vector addition (Stream* Triad) 

9. Dense matrix-matrix multiplication (DGEMM) 

10. Branching Bonanza 

“Branching Bonanza” is formulated as a local (i.e. non-distributed, serial) or simply 

replicated task. No additional insight is expected from this task when implemented using 

parallel algorithms, except with regard to shared caches.  

We provide high-level cost models for the performance of the parallel research kernels on 

a parallel computer. These models, which we call performance expectations, are one of 

the most important parts of this effort, since without them there is no way of knowing if 
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observed performance reflects hardware issues, compiler or runtime library defects, or 

artifacts of the implementations of the kernels.  

A performance expectation codifies what an experienced parallel programmer expects 

from a good, real parallel system with finite resources. It ignores details of micro-

architecture and of the particular software environment. Hence, the performance 

expectation reflects what performance of a kenel should be in the absence of low-level 

design errors or imperfections. The performance expectations assume either a single 

multi-core chip with attached off-chip memory, or a cluster of single-core processors, 

each with their own private memory and memory channel. In either case we leave the 

topology of the interconnection network unspecified. The algorithms we present are 

formulated such that they perform reasonably well, even on a simple linear array or ring 

topology. For performance expectations we will not use any topological information, but 

only point-to-point and bi-section bandwidth. 

Definitions and Assumptions:  

We use the symbols  and  for latency and bandwidth, respectively. Aggregate (bi-

section) bandwidth is . Subscripts “M” and “$” refer to memory and cache (line), 

respectively. Subscripts “N” and “C” refer to (cluster) Node(s) and Chip, respectively. 

“L” stands for Length with a subscript to define the specific context. 

 

Symbol Meaning units 

βM Memory bandwidth (one core or one cpu to memory) Bytes/sec   

αM Memory latency  sec 

αN cluster message latency  sec 

N cluster point-to-point message bandwidth  Bytes/sec   

N cluster aggregate (bi-section) message bandwidth  Bytes/sec   

CM on-chip aggregate (bi-section) memory bandwidth  Bytes/sec   

C$ on-chip cache-to-cache aggregate (bi-section) bandwidth  Bytes/sec   

LW word size  Bytes 

L$ cache line length  B Bytes 

P number of cores/cluster nodes  

FP peak scalar/vector floating point performance (floating 

point multiply adds per sec) per core/node 

1/ sec 

IP peak scalar/vector integer performance (instructions/s) per 

node/core 

1/ sec 

We note that βN may be of the same order as βM, depending on the system configuration 

and implementation. However, αN will normally be much larger than αM, even in the case 

of shared memory systems, due to software overheads. We assume that on-chip cache-to-

cache transfers are much faster than accesses to off-chip memory.  

We assume that the processor cores feature fused multiply-add floating point pipelines, 

so that maximum floating point speed is only reached for computations that have a 

balanced mix of multiplications and additions. 



We ignore latency and bandwidth between the various levels of cache and registers 

within a specific node or core; these are considered irrelevant compared to traffic 

between memory and cache. 

 

Figure 1. Schematic of multi-core chip. We only display one level of on-chip cache ($). It 

is shown as physically distributed, i.e. a tile architecture. The on-chip interconnect is left 

unspecified, as is the mechanism to access the off-chip memory, which maybe shared, 

private, or a mix of the two. 

While the implementations of the parallel research kernels are all completely 

parameterized and thus allow us to investigate different stress points of the computer 

system, the performance expectations will only be provided for “extreme” cases, where 

one extreme is defined as so large that the problem exceeds reasonable on-chip resources 

(specifically, caches), and the other as sufficiently small that no off-chip resources are 

required (in that case effects such as latency usually become important). We use 

subscripts “L” and “S” for large and small cases, respectively. Where applicable, caches 

will always be assumed to be hot. 



 

Figure 2. Schematic of cluster. We only display one level of on-chip cache ($). Each cpu 

has access to off-chip private memory. The cluster interconnect is unspecified. 

Since the goal of this project is to guide hardware design, not software library 

development, we do not aim to cover MPI and OpenMP constructs comprehensively. 

Instead, we focus on a set of commonly used operations whose efficiency significantly 

affects application performance. The set is chosen such that its performance depends 

comprehensively on the performance of the underlying hardware. In other words, if the 

set performs well, it can be assumed that all other significant operations will perform 

equally well, provided correct software implementation and correct, efficient compilers. 

For example, efficient implementations of OpenMP locks rely on the same hardware as 

do critical sections, so we only include one of the two in our test suite. 

Whenever we refer to threads in this report, it will be understood that this may also refer 

to MPI processes. We assume that a single process or a single thread will run on each 

physical core. 

Although we attempt to include all first order effects on performance in the expectations, 

we exclude some that usually have an influence on most current systems, but that are not 

fundamental: 

 Memory consistency traffic. A write operation may invoke a prior read of the 

cache line involved to ensure that the entire cache line will be up to date when the 

write operation completes, which could potentially double the memory bandwidth 

requirement for the variables involved. This is not a strict necessity, especially not 

if the application (almost) always updates entire cache lines before writing them 

back, so we ignore this effect. 



 Network congestion. This is incorporated, in principle, in the bi-section 

bandwidth, so we do not model it explicitly. 

The Parallel Research Kernels: Specifications + 
performance expectations 

Transpose 

Name: TRANSPOSE 

Description: A square matrix A(nxn), decomposed by columns among the threads, is 

written to another matrix B, also decomposed by columns among the threads, that is the 

transpose of the original.    The problem size is parameterized, such that the smallest 

matrix fits entirely in the lowest level caches, up to a size that does not fit inside any 

reasonably sized last level. This scale-up will reveal the transition from performance 

dominated by the interconnect on a chip to performance dominated by memory 

bandwidth for the data exchange between threads. The transposition of data within each 

thread will also reveal the range of local memory bandwidths and latencies. 

On clusters the algorithm involves an all-to-all communication operation. We do not use 

the standard blocking MPI_Alltoall library function  because it does not allow overlap of 

computation and communication, is prone to congestion on the interconnect network, and 

does not offer sufficient opportunity to keep communicated data in cache. Instead, we 

divide the communication into a collection of pair-wise matchings, using ordinary 

MPI_Isend and MPI_Irecv calls for the asynchronous implementation, and 

MPI_Sendrecv for the synchronous version. On the sender side the data is read from 

memory in strided fashion and written to a contiguous buffer. On the receiver side the 

data is stored directly into the right location in the transposed matrix. Hence, memory 

bandwidth is consumed (at least) twice for each matrix element if the matrix is too large 

to fit in cache. 

Usage: This kernel is used in multi-channel digital signal processing algorithms, single 

and multi-dimensional FFT algorithms, and other applications that feature strong, 

directionally biased data dependencies that change in the course of the computation.  

Performance expectation:  

All reasonable implementations of dense matrix transposition will tile the transpose to 

improve cache usage and limit TLB misses, except if the matrix is so small that it fits in 

L1.  

Assumptions:  

 tiling is such that data within each cache line is used completely (memory bus 

payload fully utilized).  

 Cluster: Computation and communication can be overlapped completely 

(asynchronous version). Tilings for local and remote transposes are independent. 

Each matrix element consumes inter-process bandwidth once. Messages can be 

pipelined, so we only experience one message latency. Filling the pipeline 

involves reading one input tile and storing it in a contiguous buffer, which is thus 

completely exposed.  



 We ignore the fact that one tile does not need to be migrated (local to the calling 

core or cpu). 

 For large matrices memory and message latencies are irrelevant.  

 Each matrix element consumes memory bandwidth twice (read + write). 

 Multi-core: for small matrices the transfer speed is limited by the on-chip core-to-

core bi-section bandwidth. The assumption is that even in the case of logically 

shared caches, they will be physically distributed (tiled architecture)   

Multi-core:   

TL = 2*n
2
*LW/CM  

TS = 2*n
2
*LW/C$ 

Cluster:   

Large matrices: 

Pipeline fill time: 2*tile_size/memory_bandwidth = 2*(n/P)
 2

*LW/βM. 

Duration of pipeline stage: max(time to fill new message, time to send all 

messages across the network) = max(2*(n/P)
 2

*LW/βM, (n/P)
 2
*P*LW/N 

Number of pipeline stages: P-1 

TL = LW *(n/P)
 2

*[2/βM +(P-1)*max(2/βM,P/N)] 

Small matrices: 

Pipeline fill time: message latency + time to issue load and store instructions to 

fill one message (cached data) = αN + 2*(n/P)
 2

/IP 

Duration of pipeline stage: max(time to fill new message, time to send all 

messages across the network) = max(2 *(n/P)
 2

/IP, (n/P)
 2

*P*LW/N) 

Number of pipeline stages: P-1 

TS = αN +(n/P)
 2

*[2/IP + (P-1)*max(2/IPS,P*LW/N)] 

Vector Reduction 

Name: REDUCE 

Description: The goal of this operation is to aggregate data owned by individual threads 

on the master thread. Each thread initializes a pair of different real-valued vectors of 

length n.  After the operation, a single vector of length n results that is the element-wise 

sum of the collection of input vectors.   

Depending on the size of the vectors, the number of threads, level of sharing between 

caches and memories attached to the cores, performance will be governed by memory 

bandwidth, inter-core bandwidth, and inter-core synchronization. 

OpenMP/C lacks a vector reduction operation, so we provide it explicitly. Depending on 

architectural and problem parameters, different reduction algorithms will be optimal. We 

use three functionally different algorithms. 



1. The master thread reads data from other threads and adds these values to its own 

vector elements. This algorithm leads to an unbalanced load for all non-trivial 

numbers of threads. 

2. The threads employ a binary reduction tree. This algorithm leads to an unbalanced 

load for all non-trivial numbers of threads, though the unbalance is not as severe 

as for algorithm 1. We provide two variants of this option, using either pairwise or 

global synchronization among threads between stages of the binary reduction tree. 

3. The threads use a modified scatter/gather algorithm [VANDEGEIJN] that is 

completely balanced for all numbers of threads. 

In MPI we currently use the library function MPI_Reduce. In a future version of the 

Parallel Research Kernels, this will be replaced with hand-coded versions that implement 

the corresponding algorithms in OpenMP. 

Usage:   The vector reduction is used in scientific computing, statistics, data mining and 

countless other parallel applications.  It is so common that MPI (C/Fortran) includes it.  

Performance expectation:  

Assumptions: 

 For large vectors memory and message latency can be ignored, and algorithm 3 is 

optimal. For short vectors latency dominates, and algorithm 2 is optimal. 

Expectations are based on these algorithms. 

 Because this is a streaming application with negligible reuse, the cost of floating 

point computations can be ignored for large vectors. For small vectors we can 

assume the data has been cached so we ignore memory costs, and the limiting 

factor becomes the floating point speed. 

 Multi-core: Algorithm 3: The algorithm has three stages:  

1.  local reduction; two local loads and one local store per vector element per 

core. 

2. scatter reduction: P-1 phases. In each phase each vector element is subject to 

one remote and one local load, and one local store. 

3. gather reduction: each element vector element is read locally and stored 

remotely. 

All phases are load balanced, meaning all cores execute the same number of loads 

and stores. Even if loads and stores are purely local, we assume they are limited in 

the aggregate by the on-chip bi-section memory bandwidth. 

 Cluster: Algorithm 3: The algorithm has three stages: 

1. local reduction: two loads and one store per vector element per process. 

2. scatter reduction: P-1 phases. In each phase each vector element is 

communicated once. In addition, two local reads and one local store are 

involved. 

3. gather reduction: all processes send their (partial) result data to the master  

process, which receives a total of one whole vector length. 

We assume all communications are bound by the bi-section bandwidth. 

Because of dependencies, communication and computation cannot be overlapped.  

Multi-core:   



Large vectors:  

(total # loads + total # stores) / memory bandwidth =  

(3*P*n + 3*(P-1)*n/P + 2*n)*LW/CM 

TL = n*(3*P
2
+5*P-3) LW/(P*CM) 

Short vectors:  

1+log(P) stages. During each stage the active threads all busy themselves with 

doing 1 flop per vector element. The length of the vector does not change.  

TS = (1+log(P)) *n/(½FP)  

Cluster:  

Large vectors:  

memory access time + communication time =  

(3*n+(P-1)*3*n)*LW/βM + ((P-1)*n*LW +n*LW)/N 

TL = P*n* LW *(3/βM +1/N) 

Short vectors:  

One local reduction stage, and log(P) communication + local reduction stages. At 

stage k of the reduction, the amount of data communicated is n*2
k-1

words. Note 

that data transfer can never be faster than uncontended point-to-point bandwidth. 

TS = n/(½FP)*(log(P)+1) + log(P)*αN +  

        Σk=1
log(P)

max(n*2
k-1

*LW/N,n*LW/N) 

Sparse matrix vector multiplication: irregular memory access on 
read  

Name: SPARSE 

Description: Generate a large, non-symmetric matrix of a given sparsity (fraction of non-

zero matrix elements), and a large dense vector.  Then multiply a dense vector by the 

sparse matrix in parallel. Depending on the size of the vector and the sparsity, 

performance will be governed by inter-core bandwidth and memory latency.  

The sparse matrix is built as follows. The standard star-shaped discretization stencil with 

a user-specified radius is applied to a structured 2-dimensional square grid. Example of a 

stencil operation with radius r=2:  

a(p,q) = c1*b(p-2,q) + c2*b(p-1,q) + c3*b(p,q) + c4*b(p+1,q) + c5*b(p+2,q) + 

c6*b(p,q-2) + c7*b(p,q-1) + c8*b(p,q+1) + c9*b(p,q+2) 

Here the coefficients c1 through c9 are constants. Non-overlapping arrays a and b signify 

field variables defined on the grid, indexed by grid point coordinates. If we linearize a 

and b in the canonical fashion, we can write the stencil operation as: a = M b, where M is 

the sparse matrix of interest. 



A square grid with linear dimension 2
n
 has 2

2n
 = 4

n
 points. Hence, M has 4

n
 rows and 4

n
 

columns, for a total of 16
n
 elements. The user specifies n. The stencil is applied in a 

periodic fashion, i.e. it wraps around the edges of the grid. 

The columns of M are permuted in a pseudo-random way, resulting in a general irregular 

sparse matrix, but with a known number of 4r+1nonzeroes per row. We use Compressed 

Row Storage (CRS) for accessing the matrix elements. Numerical values of matrix 

elements are chosen judiciously to make verification easy. They do not correspond to any 

realistic discretization of a continuum problem. 

Usage: This kernel is used extensively in optimization problems, data mining and 

implicit PDE solvers.   

Performance expectation: 

This kernel is dominated by irregular vector reads and regular matrix reads, plus regular 

vector writes.  There is no practical reuse of data. 

Assumptions: 

 requests for the irregular vector reads can be pipelined, so we can ignore memory 

latency, but only one word out of each cache line is used 

 Long vectors: because there is negligible reuse, performance is dominated by 

memory traffic, and computational cost can be ignored, as long as the FPU units 

are properly pipelined. Although in practical situations the performance of this 

kernel may be dominated by TLB misses, this is an artifact of the software 

environment (page size), not of the underlying hardware, so we ignore this effect. 

 CRS requires the storage and reading of indices to be used for indirect referencing. 

We take into account the bandwidth requirement of reading these indices, but 

assume that an index is as long as a floating point word, for convenience. 

 Short vectors: All data is assumed to be already present in cache, and we ignore 

the cost of loading and storing data for both the vector initialization part and the 

matrix-vector multiplication part.  

 Cluster: the method uses static domain decomposition (by rows) of the matrix and 

replicates the vector, so no communications are involved in doing the actual 

multiplication, but each process initializes its own chunk of the vector and 

broadcasts that to the other processes. 

 Multi-core: each thread (re-)initializes its own chunk of the vector before each 

multiplication.  

Multi-core:  

Long vectors:  

For each of the 4
n
 rows of the matrix a multiplication involves reading 4r+1 

words randomly from the vector, requiring (4r+1) cache line loads. It also requires 

reading 4r+1 indices (stride one), 4r+1 matrix elements (stride one), one read of 

the result vector element (stride one), and one write of the result vector (stride 1). 

For the vector initialization we incur one write (stride one) per row of the matrix. 

Since all cores will be loading and storing simultaneously, we use the bi-section 

memory bandwidth to evaluate the cost of message traffic. 



TL = 4
n
[(4r+1) (L$+2LW)+3LW]/CM  

Cluster: 

Long vectors:  

Each process owns 4
n
/P rows of the matrix and the same number of vector 

elements. Hence, we can compute the non-communication part of the execution 

time based on the multi-core evaluation. The communication involves 

broadcasting the locally generated vector segments to all processes. For long 

vectors the optimal algorithm communicates (P-1) complete vectors in the 

aggregate in a number of stages (see Reduction kernel). We use the cluster bi-

section bandwidth to compute the cost of that data traffic.  

TL = 4
n
/P*[(4r+1) (L$+2LW)+3LW]/ βM + 4

n
(P-1)*LW / N 

Stencil: multiple regular strides on memory read access, unit 
stride on write 

Name: STENCIL 

Description: This kernel applies a scalar stencil operation to the interior of a two-

dimensional discretization grid of size nxn. The stencil, which reflects a discrete 

divergence operator, has radius r. It is either star shaped or square, resulting in reuse 

factors of 4r+1 or (2r+1)
2
, respectively, provided all the data belonging to a strip of the 

grid swept out by the stencil fits in cache. The distributed-memory version uses a two-

dimensional domain decomposition to minimize the communication demand. The stencil 

computation is completely data parallel. Message passing is required to fill ghost point 

values obtained from logically nearest neighbors.  

Usage: Stencil operations form the core of almost all structured-grid computations. They 

are also used in local image filter operations.  

Performance expectation: TBD 

Random access update: irregular memory access on both read 
and write 

Name: RANDOM 

Description: This kernel generates within an array of length N a pseudo-random stream 

of n addresses whose contents need to be modified according to a bit mask. This tests the 

ability and efficiency of the system to read and write data elements with random stride, 

and to protect against data races for the same element. It is derived from the HPC 

Challenge Random Access benchmark. Since data is both read and updated, a major 

challenge is to pipeline memory accesses in the face of potential conflicts between 

successive writes to the same memory location by the same thread, as well as by different 

threads. If such pipelining cannot be done, performance of the kernel is governed by 

memory latency for large tables, and the sizes of the caches and memory covered by the 

TLB for small and intermediate size tables.  



Threads can either all update elements of the same table of values simultaneously, in 

which data races can potentially arise, or of private, non-shared tables of values. Updates 

of the same element by different threads can be interchanged, as long as they happen 

atomically.  

The algorithm to generate the stream of addresses has a look-ahead feature in which it is 

possible to jump to any sequence number within the stream without generating preceding 

addresses, which allows parallelization of the process.  

The HPC Challenge specification of the algorithm was modified to use an initial seed for 

the random number generator that is not biased towards certain table elements.  

Usage: This operation is used frequently in transaction processing and national security 

oriented applications. 

Performance expectation: 

This kernel is dominated by random reads of memory, and by writes to the same location.  

Assumptions: 

 Although there is a sequential dependency in the generation of addresses at which 

data needs to be read and updated, that generation itself is much faster than 

fetching the data from memory and writing it back. Hence, we can ignore the cost 

of the address generation. 

 Because of the possibility of accessing the same table element multiple times in 

quick succession, we assume that memory accesses are fully serialized (not 

pipelined), so that for long vectors each access suffers a memory latency. We only 

suffer that latency upon the reading, writing back data is overlapped with reading 

new data. Memory bandwidth is immaterial. 

 We ignore the effect of TLB misses, although on current systems that is often a 

dominant part of the cost. 

 Multi-core: We ignore effects of false sharing. 

 Cluster: We use the binning method for communicating update requests to 

“remote” processes. Bin size is K words, and we ignore any load imbalance. We 

choose K sufficiently small that any messages can stay in cache, which means we 

do not need to pay a memory access cost for those messages. As a first order 

approximation we will assume all n indices generated by the calling process are 

scattered to other processes.  

Multi-core:  

Long vectors:  

execution time = number of table accesses per core * memory latency 

TL = (n/P)* αM  

Cluster: 

Long vectors:  



execution time = local update + message passing cost = number of table accesses 

per process * memory latency + network bandwidth cost of sending all generated 

indices to other processes + number of messages per process * message latency   

TL = (n/P)* αM + n*P* LW /N + (n/K)* αN 

Synchronization 

Name: SYNCH 

The most common and most useful synchronization types in parallel programs are point-

to-point (peer-to-peer) and global. These do not actually constitute work, but they are 

necessary to guarantee consistency of results. Synchronization is never a goal in its own 

right, it only makes sense if some information transfer between threads takes place. 

Hence, our synchronization tasks involve some limited amount of data transfer, either 

implicitly through shared memory consistency updates, or explicitly through messages. 

Synchronization implies ordered access to memory/data, as distinguished from exclusive 

but unordered access (see locks, atomicity).  

Global synchronization: While this is typically fairly expensive and should be avoided 

if possible, it is a convenient and easy-to-use mechanism to produce correct code. Hence, 

it has to be executed with high efficiency on the target platform. The following task 

stresses that efficiency. All threads receive a string of a fixed number of n digits. They 

combine these into a single string by concatenating the substrings in the order of the 

thread number. Using a fast, deterministic algorithm, they then assemble another 

substring of the same length out of the concatenated string and reconcatenate. This 

process is repeated enough times to produce accurately measurable execution times. The 

substring selection method is chosen such that it requires that the entire concatenated 

string be available and consistent 

The global synchronizations can be implemented using a barrier in OpenMP and 

MPI_Allgather in MPI. There is no work to do that can be overlapped with the data 

exchange between cores. Depending on the size of the concatenation string and the 

number of threads, performance of the kernel will be governed by inter-core latency, 

inter-core bandwidth, or memory bandwidth. 

Performance expectation: 

Assumptions: 

 The synchronization string is sufficiently long to avoid false sharing in the multi-

core case. Hence, there will be no contention for write ownership of cache lines 

 The barrier in the multi-core case is implemented using an O(1) memory latency 

algorithm [FastBarrier].  It needs to be called twice for each iteration. We use 2 

memory latencies per barrier. 

 The asymptotically optimal algorithms for long and short vectors for 

MPI_Allgather described by Van de Geijn et al. [VANDEGEIJN] are used to 

implement the synchronization on clusters. 

Multi-core:   

Long strings:  



execution time = (time to read and write all strings ). For reading the stride is P-1, 

which means each read of a cache line contains max(L$/P,1) characters requested 

by the calling core. Hence, each core needs to read n* L$/max(L$/P,1) bytes from 

memory. It writes n bytes (stride 1) to memory. 

TL = n*( L$/max(L$/P,1)+1)*P/  

Short strings:  

execution time = (time to read and write all strings + 2 barriers). Reading is 

(mostly) remote, but writes are local and stride one, so they happen at the peak 

integer performance. 

TS = n*P/  + n/IP + 2*2*αM 

Cluster:  

Long strings:  

each node needs to read data from the global string, stored in local memory, write 

back a substring in local memory, and do an allgather step. See multi-core for the 

number of bytes read. Writing is local and contiguous. For the allgather we can 

assume that the global string is copied across the network a total of (P-1)*2 times, 

once in each of the (P-1)*2 phases. 

TL = n*( L$/max(L$/P,1)+1)/βM + n*(P-1)*2/N 

Short strings:  

All reading and writing is between registers and cache, and goes at the peak 

integer performance. Since communication latencies are important, the optimal 

algorithm [VANDEGEIJN] tries to reduce the number of message/communication 

phases.  

TS = 2*n/IP + log(P)*αN + n*(P-1)*2/N 

Point-to-point synchronization: This is the most efficient way, in principle, of 

communicating between threads, and the programmer should be allowed to use it without 

fear of destroying performance of the code. The task in which we embed this operation is 

the one-dimensional software pipeline. A two-dimensional array A of size n x m is 

distributed among the threads in vertical strips. We apply the following difference stencil 

to the array values in such a way that only those elements are used that have been 

updated previously: A(i,j) = A(i-1,j) + A(i,j-1) – A(i-1,j-1). The pipeline algorithm to be 

used is as follows. The first thread computes one partial row (fixed j) of updated elements 

of A. It then synchronizes with its right neighbor thread, which continues within the same 

row, while the first thread starts the second row. At the next synchronization point the 

third thread can commence its part of the first row, etc.  

Peer-to-peer synchronizations can be implemented using shared flags plus the flush 

directive in OpenMP, and point-to-point messages in MPI, respectively. These techniques 

incur a forced write to and read from shared memory, and an inter-process 

communication latency, respectively. The latter may in turn require a forced write and 

read on a multi-core system with shared memory.  



Performance expectation: 

Assumptions: 

 There is negligible data shared or communicated by the threads/processes in the 

course of the computation, so we can ignore the bandwidth involved in 

synchronization. 

 The stencil is sufficiently compact that all data for it can stay in cache, even for 

large grids. Hence, each array element needs to be read from memory at most 

once. We also need to write one array element per stencil computation. 

 For large n the synchronization cost (both MPI and OpenMP) can be ignored. 

 The stencil operation has no multiplications, so peak floating point speed is 

limited to ½FP. We assume that memory loads and FPU activity can be 

overlapped in case of large (both n and m) grids, using prefetching. We ignore the 

effect of data dependencies that could inhibit pipelining the computations. 

 We ignore load imbalance caused by pipeline fill and drain. 

 Multi-core: memory bandwidth is shared, but each thread only carries out its own 

part of the computation. 

 Cluster: memory bandwidth is not shared. 

Multi-core:  

Large grids:  

For each grid line segment (n/P points) each core needs to read n/P new words 

from memory, write back n/P word (both stride one), do 2 flops per point, and one 

synchronization (ignored). 

TL = max(2*n*m* LW /CM,2*(n/P)*m/½FP) 

Small grids:  

All data can now be read from and written to cache so we assume that loads and 

stores are hidden by computation. We do need to take synchronization costs into 

account. 

TS = 2*(n/P)*m/½FP + m*αM 

Cluster:  

Large grids:  

Similar to the multi-core case, except that memory bandwidth is not shared. 

TL = max(2*(n/P)*m*LW/βM,2*(n/P)*m/½FP) 

Small grids:  

Similar to multi-core case. 

TS = 2*(n/P)*m/½FP + m*αN 

Usage: Parallel programs with data dependencies typically require inter-thread 

coordination and synchronization. In OpenMP a global synchronization is often implied 

at the end of work sharing constructs. 



Atomic reference counting, shared and private 

Name: REFCOUNT 

Usage of shared variables is specific to the shared-memory programming model. 

Traditionally, locks and critical sections are used when groups of statements or 

statements with side effects must be executed atomically, i.e. by one thread at a time, to 

protect against competing for shared resources. Oftentimes they are used in the process of 

parallelizing a code to guarantee correctness. Locks may severely degrade performance, 

since they serialize access among threads that share the lock. Nonetheless, if used 

judiciously, they can help speed up the programming process without undue application 

slowdown. In properly constructed applications with significant use of locks, many locks 

will be uncontended, that is, the thread trying to acquire the lock will not have to wait. 

Optimizing for this situation, however, may lead to suboptimal treatment of the 

contended lock, causing potentially disproportionate slowdown of applications in which 

the locks are active. Hence, both contended and uncontended locks must be evaluated.  

An alternative to locks is offered by Transactional Memory, which supports grouped 

atomic operations with light-weight synchronization. 

Shared reference counters: All threads update a pair of shared counters in tandem N 

times; this prohibits the use of the atomic directive in OpenMP, which only protects 

updates of a single memory location. The counters may not be stored in adjacent memory 

locations, which would allow an atomic update of a single large word. Performance of 

this kernel is governed by the system support for atomic transactions. 

Performance expectation: 

Assumptions: 

 If the multi-core system supports atomic read-modify-write semantics, acquiring 

and releasing a shared lock each requires one memory latency, using, for example 

MCS-style list-based queueing locks . If not, then Lamport’s Bakery Algorithm 

[Lamport] shows that 5 memory latencies are sufficient. 

 We assume a fair lock, which means that after the threads queue their first request 

for the lock guarding the counters, they will be served in order, and after each 

lock acquisition and release the thread will enter the queue at the end. This means 

that a different thread will update the counters upon each lock acquisition. 

 Updating the two reference counters can be overlapped with memory operations, 

but the counters themselves must be read from memory before we can update 

them. 

Multi-core: TL = 4*αM*N*P 

Private reference counters: All threads update a pair of private counters, which are 

stored in a shared array whose rows are indexed by thread number. While any locks can 

be removed without affecting correctness, the compiler will not do so because the array is 

shared. Performance of this kernel is governed by the effectiveness with which the 

system supports non-conflicting atomic transactions. 

Performance expectation: 

Assumptions: 



 Reference counters as well as lock variables are kept in registers.  

 Acquiring and releasing the private lock variables and updating the reference are 

integer operations. Each counts as a single, non-vectorizable integer operation. 

Multi-core: TL = 4*N/IP 

 

Usage: Atomic constructs are often used to guarantee correctness of parallelized code 

whose correctness is not easily established by the programmer or parallelization tool. 

Scaled vector addition (Stream triad) 

Name: NSTREAM 

Description: This task, derived from McCalpin’s Stream benchmark, also often called 

DAXPY, entails addition of two vectors of length n, one of which is scaled by a constant, 

to form a third vector: a(i) = b(i) + q*c(i). It measures the speed with which the processor 

can maintain a stream of contiguous memory reads and writes, without any reuse. By 

varying the size of the loop, the different levels of the memory hierarchy are exercised. 

Prefetching is crucial to obtaining performance. 

Usage:   This test is a standard measure for the ability of a system to support applications 

with good spatial locality but limited or no data reuse. 

Assumptions: 

 Short vectors can be run out of cache.  

 The computation fully utilizes the FPUs. 

 There is no communication between the threads. 

Performance expectation: 

Multi-core: TL = n*3 LW/βCM 

  TS = (n/P)/FP 

Cluster:  TL = (n/P)*3*LW/βM 

  TS = (n/P)/FP 

Dense Matrix multiplication 

Name: DGEMM 

Description: This is the most important of the BLAS3 routines.  The full DGEMM is 

defined as  

C = σA*B + ρC 

where A, B and C are double precision n x n matrices, σ and ρ are scalars, and input 

parameters to the routine control whether the matrices are transposed or not.  To simplify 

our analysis, we restrict ourselves to the case without any transposed matrices, and with 

=1, =0. 

While getting good performance for DGEMM (in excess of 40% of peak execution rate) 

is fairly straightforward on most systems because of its favorable temporal and spatial 



locality properties in case the matrices are blocked, obtaining a fraction of peak 

performance that is close to 100% usually requires substantial and non-obvious platform 

dependent tuning. Unlike most of the other kernels, performance is not governed by 

bandwidth between the different levels of the memory hierarchy, but by the proper 

blocking supporting data movements, and by scheduling work for the execution units.  

Usage:   DGEMM is the standard building block of dense linear algebra.  It is used in 

some optimization problems, scientific computing (quantum chemistry, electrodynamics, 

etc), and a signal processing, etc.  DGEMM is also the heart of the well-known Linpack 

benchmark.  

Performance expectation: 

Multi-core/Cluster: TL = TS = n
3
/(P*FP) 

Branching Bonanza 

Name: BRANCH 

Description: While synthetic work-load proxies may feature regular and irregular data 

access, they often are quite regular and predictable in terms of code paths, especially 

inside loops or loop nests in which most of the work is carried out. Real applications, 

however, often feature inner loop data-dependent branches. These can defeat speculative 

execution and prefetching, which might otherwise return sizeable performance 

improvements. Branch-intensive loops can be divided into several broad categories: a) 

executed statements differ depending on the branch(es) taken, but the memory references 

do not change; b) executed statements differ, depending on the branch taken, as well as 

the memory locations referenced; c) each branch choice causes a call to a different 

substantial function, causing potentially large numbers of instructions to be loaded into 

the instruction cache and discarded from it at high frequency; d) each branch choice 

corresponds to an alternative, with no or merely inlined calls to short functions. These 

categories are not all mutually exclusive. 

In this kernel we focus on four cases. The first three all concern light-weight loops 

(length L), i.e. loops that have very few instructions associated with them. 

1. branches inside vectorizable loops where the introduction of the branch does not 

necessarily inhibit vectorization. 

2. branches inside vectorizable loops where the introduction of the branch does 

inhibit vectorization. 

3. branches inside non-vectorizable loops. 

4. branches inside loops in which each branch corresponds to a sizeable and 

different set of instructions.  

Approach: For the light-weight loops we select the loop bodies as follows, where i is the 

loop index, expr1 is a very simple arithmetic expression, expr2 is an expression 

containing a single value, and expr3 is functionally the identity. All arrays and constants 

are of the integer data type. 

aux = expr1(i); 

if (expr2(i)>0)vector[i] -= 2*vector[expr3(i)]; 

else        vector[i] -= 2*aux; 



Expr1(i) is the same for all three cases, and numerically equals vector[i] upon entry of the 

loop.  Expr2(i) equals either aux (cases 1 and 3), or vector[index[i]] ≡ vector[i] (case 2). 

Expr3 in the first assignment of the loop body equals i (cases 1 and 2), or index[i] ≡ i 

(case 3). Vector has approximately the same number of positive and negative elements. 

Sign changes occur approximately every 3 to four loop iterations. Each version of the 

loop with a conditional branch has a counterpart that does not contain the branch, but 

which does the same amount of computation.. Specifically, the loop body gets replaced 

with:  

aux = expr1(i); 

vector[i] -= 2*(vector[expr3(i)]+aux); 

The result of these choices is that the three different tasks all do exactly the same amount 

of computational work, so that the impact of the different types of branches can be 

compared. Moreover, the branches are "unpredictable," meaning that if the compiler 

guesses them to be always taken or to be always not taken, it will be wrong about 50% of 

the time. This ensures that the cost of branch misprediction will be measurable.  

For case 4 we use a somewhat different approach. Expr1(i) is now not a simple 

expression, but is obtained as follows. A square matrix A of user-defined size is filled 

element by element, such that the resulting matrix is always the identity, but the actual 

instructions are different for different values of i modulo another prescribed value. 

Subsequently, the matrix B is computed as the arithmetic average of A and A
T
. The 

returned value of expr1 is i if B equals the identity matrix, and zero otherwise. Finally, 

we compute the vector element in the same way as the non-branching version of cases 1 

and 2.The non-branching version of the loop is essentially the same as the branching 

version, except that the construction of matrix A is now no longer dependent on the value 

of i. 

The result of these choices is that an amount of program text proportional to N*N, where 

N is the matrix order chosen, is generated for each different branch in the loop. 

Performance expectation: 

Assumptions: 

 integer operations are not pipelined, they complete in the integer units in 1 cycle.  

 A comparison counts for one integer operation. 

 Indexing into an array (address computation) counts for one integer operation. 

That does not include the computation of the index itself. 

 Each iteration of 1), 2), 3) does 7.5, 5.5, and 7 integer operations, respectively, on 

average (depends on outcome of test). 2) vectorizes (with masking), but 1) and 3) 

do not.  Masking means that 2) will execute more instructions (7.5) than are 

actually used, but they are vectorized.  

 The data set size for 1), 2) and 3) is constant and small, and the number of 

instructions involved is negligible, even for large problems (many iterations). 

Hence, for these problems instructions and data are all cached, so we do not need 

to take into account the cost of memory access.  

 Each iteration of 4) does (20+4+2*N*N) integer operations 



 Each function of 4) contains K*N*N bytes of instructions (K depends, among 

others, on the level of optimization), which have to be read from memory for 

large problems. We assume that the reading of these instructions can be 

overlapped with computations.  

Performance expectations: 

Multi-core: 

1. TS = TL = 7.5*L/IP 

2. TS = TL = 7.5*L/IP 

3. TS = TL = 7*L/IP 

4. TS = L*(24+2*N
2
)/IP 

TL = L*max((24+2*N
2
)/IP, K*N

2
*P/CM) 

Cluster: 

Items 1, 2, 3 and the value of TS from item 4 are identical to the multi-core expectations.  

The only difference is for TL for which the expectation is: 

TL = L*max((24+2*N
2
)/IP, K*N

2
/βM) 
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