#) JOLICH

FORSCHUNGSZENTRUM

CUBE 4.3.4 — User Guide

Generic Display for Application Performance Data

March 19, 2016 The Scalasca Development Team
scalasca@fz-juelich.de

1

Chapter 0. Copyright

Copyright

Copyright © 1998-2016 Forschungszentrum Jilich GmbH, Germany

Copyright © 2009-2015 German Research School for Simulation Sciences GmbH,
Julich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the names of Forschungszentrum Jilich GmbH or German Research
School for Simulation Sciences GmbH, Jilich/Aachen, nor the names of their con-
tributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB+
UTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITN«
ESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDI:-
NG, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVIC+-
ES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIB+
ILITY OF SUCH DAMAGE.

il

Chapter 0. Copyright

v

Contents

Contents

Copyright iiii
1 Cube User Guide 1
1.1 Abstract e e 1
1.2 Introduction e 1
1.3 Command lineoptions, 3
1.4 Environment variables 3
1.5 UsingtheDisplay 4
1.6 Plugins e e 26
1.7 Performance Algebraand Tools 47
2 CUBE4 API 65
2.1 CreatingCUBEFiles 65
3 Appendix 83
3.1 File format of statistics files 83
Bibliography 85

Chapter 1. Cube User Guide

1 Cube User Guide

1.1 Abstract

CUBE is a presentation component suitable for displaying performance data for parallel programs in-
cluding MPI and OpenOpenMP applications. Program performance is represented in a multi-dimensional
space including various program and system resources. The tool allows the interactive exploration of this
space in a scalable fashion and browsing the different kinds of performance behavior with ease. CUBE
also includes a library to read and write performance data as well as operators to compare, integrate, and
summarize data from different experiments. This user manual provides instructions of how to use the
CUBE display, how to use the operators, and how to write CUBE files.

The version 4 of CUBE implementation has an incompatible API and file format to preceding versions.

1.2 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a presentation component suitable for
displaying a wide variety of performance data for parallel programs including MPI [1]
and OpenOpenMP [2] applications. CUBE allows interactive exploration of the perfor-
mance data in a scalable fashion.cube_ Scalability is achieved in two ways: hierarchical
decomposition of individual dimensions and aggregation across different dimensions.
All metrics are uniformly accommodated in the same display and thus provide the abil-
ity to easily compare the effects of different kinds of program behavior.

CUBE has been designed around a high-level data model of program behavior called the
cube performance space. The CUBE performance space consists of three dimensions: a
metric dimension, a program dimension, and a system dimension. The metric dimension
contains a set of metrics, such as communication time or cache misses. The program
dimension contains the program's call tree, which includes all the call paths onto which
metric values can be mapped. The system dimension contains the items executing in par-
allel, which can be processes or threads depending on the parallel programming model.
Each point (m,c,s) of the space can be mapped onto a number representing the actual
measurement for metric m while the control flow of process/thread s was executing call
path ¢ . This mapping is called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric
dimension is organized in an inclusion hierarchy where a metric at a lower level is a sub-

Chapter 1. Cube User Guide

set of its parent. For example, communication time is a subset of execution time. Second,
the program dimension is organized in a call-tree hierarchy. However, sometimes it can
be advantageous to abstract away from the hierarchy of the call tree, for example if one is
interested in the severities of certain methods, independently of the position of their invo-
cations. For this purpose CUBE supports also flat call profiles, that are represented as a
flat sequence of all methods. Finally, the system dimension is organized in a multi-level
hierarchy consisting of the levels: machine, SMPnode, process, and thread.

CUBE also provides a library to read and write instances of the previously described data
model in the form of a .CUBEXfile (which is a TAR TARfile anchor.xml inside of the
CUBEXenvelope. The data part contains the actual severity numbers to be mapped onto
the different elements of the performance space and stored in binary format in various
files inside of the CUBEXenvelope.

The display component can load such a file and display the different dimensions of the
performance space using three coupled tree browsers (figure 1.1). The browsers are
connected in such a way that you can view one dimension with respect to another di-
mension. The connection is based on selections: in each tree you can select one or more
nodes. For example, in Figurel.l the Execution metric, the adi call path node, and
Process 0 are selected. For each tree, the selections in the trees on its left-hand-side
(if any) restrict the considered data: The metric nodes aggregate data over all call path
nodes and all system items, the call tree aggregates data for the Execution metric over
all system nodes, and each node of the system tree shows the severity for the Execution
metric of the adi call path node for this system node.

If the CUBE file contains topological information, the distribution of the performance
metric across the topology can be examined using the topology view. Furthermore, the
display is augmented with a source-code display that shows the position of a call site in
the source code.

As performance tuning of parallel applications usually involves multiple experiments to
compare the effects of certain optimization strategies, CUBE includes a feature designed
to simplify cross-experiment analysis. The CUBE algebra [4] is an extension of the
framework for multi-execution performance tuning by Karavanic and Miller [3] and of-
fers a set of operators that can be used to compare, integrate, and summarize multiple
CUBE data sets. The algebra allows the combination of multiple CUBE data sets into a
single one that can be displayed and examined like the original ones.

In addition to the information provided by plain CUBE files a statistics file can be pro-
vided, enabling the display of additional statistical information of severity values. Fur-
thermore, a statistics file can also contain information about the most severe instances
of certain performance patterns — globally as well as with respect to specific call paths.
If a trace file of the program being analyzed is available, the user can connect to a trace
browser (i.e., Vampir or Paraver) and then use CUBE to zoom their timelines to the most
severe instances of the performance patterns for a more detailed examination of the cause
of these performance patterns.

1.3. Command line options

The following sections explain how to use the CUBE display, how to create CUBE files,
and how to use the algebra and other tools.

1.3 Command line options
To invoke GUI for CUBE profile exploration one uses command:

cube [-disable-plugins] [-preload] [-lastN] [-help] filename.cubex

A list of main options:

—-preload All datais read at the begining and held in memory
—help Display list of command line options

P%todo

1.4 Environment variables

CUBE provides the option of displaying an online description for entries in the metric
tree via a context menu. By default, it will search for the given HTML description file on
all the mirror URLSs specified in the CUBE file. In case there is no Internet connection,
the Qt-based CUBE GUI can be configured to also search in a list of local directories for
documentation files. These additional search paths can be specified via the environment
variable CUBE_DOCPATH as a colon-separated list of local directories, e.g.,

CUBE_DOCPATH=/opt/software/doc:/usr/local/share/doc

Note that this feature is only available in the Qt-based GUI and not in the older wx«
Widgets-based one.

To prevent CUBE from trying to load the HTML documentation via HTTP or HTTPS
mirror URLSs (e.g., in restricted environments were outbound connections are blocked by
a firewall and the timeout is taking very long), the environment variable CUBE_DISABL«
E_HTTP_DOCS can be set to either 1, yes or true.

CUBE C++ library allows to control the way it loads the data using the environment
variable CUBE_DATA_LOADING. Following values are possible:

1. keepall - data is loaded on demand and kept in memory to the end of lyfecycle of
the Cube object.

2. preload - all data is loaded during the metric initialization and kept in memory to
the end of lyfecycle of the Cube object.

Chapter 1. Cube User Guide

3. manual - Application should request and drop the data sets explicitly. No correct-
ness check is performed. Therefore one has to use this strategy with care.

4. lastn - Only N last used data rows are kept in memory. N is specified via environ-
ment variable CUBE_NUMBER_ROWS

1.5 Using the Display

This section explains how to use the CUBE-QT display component. After installation,
the executable "cube" can be found in the specified directory of executables (specifiable
by the “prefix" argument of configure, see the CUBE Installation Manual). The program
supports as an optional command-line argument the name of a cube file that will be
opened upon program start.

After a brief description of the basic principles, different components of the GUIwill be
described in detail.

1.5.1 Basic Principles

The CUBE-QT display has three tree browsers, each of them representing a dimension
of the performance space (figure 1.1). Per default, the left tree displays the metric
dimension, the middle tree displays the program dimension, and the right tree displays
the system dimension. The nodes in the metric tree represent metrics. The nodes in the
program dimension can have different semantics depending on the particular view that
has been selected. In Figurel.l , they represent call paths forming a call tree. The nodes
in the system dimension represent machines, nodes, processes, or threads from top to
bottom.

Each node is associated with a value, which is called the severity and is displayed si-
multaneously using a numerical value as well as a colored square. Colors enable the
easy identification of nodes of interest even in a large tree, whereas the numerical values
enable the precise comparison of individual values. The sign of a value is visually dis-
tinguished by the relief of the colored square. A raised relief indicates a positive sign, a
sunken relief indicates a negative sign.

Users can perform two basic types of actions: selecting a node or expanding/collapsing
a node. In the metric tree in figure 1.1 , the metric Execution is selected. Selecting a
node in a tree causes the other trees on its right to display values for that selection. For
the example of figure 1.1 , the metric tree displays the total metric values over all call
tree and system nodes, the call tree displays values for the Execution metric over all
system entities, and the system tree for the Execution metric and the adi call tree node.
Briefly, a tree is always an aggregation over all selected nodes of its neighboring trees to
the left.

1.5. Using the Display

File Display Plugins Help

Absolute v | | Absolute v | Absolute W
E Metric tree E Call tree Flat view E System tree E| Topology 0 . >
' 5358.56 Time (set ~ | 5358.56 bt A 5358.56 IBM BG/P ~

3.06e6 Visits (oce
54 Synchronizatiol
8.48e4 Communic
1.85e9 Bytes tran
447,01 Computati

> .
|

< | < »

C____ Tl < 1< > All (128 elements) v

0.00.., 5358.5.., 5358.,56.. EDD... 5358.56 (1... 5358.56..[(|41.82 41.95

Figure 1.1: CUBE display window

Collapsed nodes with a subtree that is not shown are marked by a [+] sign, expanded
nodes with a visible subtree by a [-] sign. You can expand/collapse a node by left-clicking
on the corresponding [+]/[-] signs. Collapsed nodes have inclusive values, i.e., their
severity is the sum of the severities over the whole collapsed subtree. For the example
of Figurel.l , the Execution metric value 3496.10 is the total time for all executions.
On the other hand, the displayed values of expanded nodes are their exclusive values.
E.g., the expanded Execution metric node in Figure 1.2 shows that the program needed
2839.54 seconds for execution other than MPI.

Note that expanding/collapsing a selected node causes the change of the current values
in the trees on its right-hand side. As explained above, in our example in Figure 1.1
the call tree displays values for the Execution metric over all system entities. Since
the Execution node is collapsed, the call tree severities are computed for the whole
Execution metric's subtree. When expanding the selected Execution node, as shown
in Figure 1.2 , the call tree displays values for the Execution metric without the MPT
metric.

Chapter 1. Cube User Guide

File Display Plugins Help

Absolute v | | Absolute v | Absolute W
E Metric tree E Call tree Flat view E System tree Topology 0 . >
g [10.00 Time (sec) |~ | | Er00.24 bt -~ 'B[0-I1BMBG/P ~

[d 266467 Executiol
O 0.00 MPI

e []0.00 OMP

1.00 Overhead
[d 1861.46 ldle thre,
@ 3.06e6 Visits (occ)
¢ [64 Synchronizations
1 [l 8.48e4 Communicat
¢ [1.85e9 Bytes transf
F [447.01 Computation

A1

e+ [0.00 mpi_setup

- 0.00 MPI_Beast

e 0.00 env_setup
-0 0.00 zone_setup

e M 0.03 map_zones

- 0.00 zone_starts

- 0.00 set_constants
q- [8.18 initialize

o [l 2.73 exact_rhs

q- [11.80 exch_gbc

& [- ROO-MO-ND

& [1- Process 0
4100 Thread 0
-0 41.08 Thread 1
4111 Thread 2
L m 32.59 Thread 3
E-- Process 1
0 33.46 Thread 0
- 3330 Thread 1
W 3246 Thread 2

e}

o [2639.60 adi L 26.56 Thread 3
- 0.00 MPI_Barrier e [1- Process 2
e [2.09 verify - 32.30 Thread 0

-0 0.00 MPI_Reduce @ 31.74 Thread 1 A
- 0.00 print_results - 32.09 Thread 2 w
= B[] 0.00 MPI_Finalize | [— - - 1< >
b s —'l_
C____ Tl < 1< > All (128 elements) v
2839.60

EDD... 2664.6,,, 5358.56..,

Ready

EDD... 26389.60 (9... 2664.67..| [0.00

=]

Figure 1.2: CUBE display window with expanded metric node “Execution”

1.5.2 GUI Components

The GUIconsists (from top to bottom) of
* a menu bar,
* three value mode combo boxes,
* three resizable panes each containing some tabs,
* three selected value information widgets,
* acolor legend, and
* a status bar.

The three resizable panes offer different views: the metric, the call, and the system pane.
You can switch between the different tabs of a pane by left-clicking on the desired tab at
the top of the pane. Note that the order of the panes can be changed (see the description
of the menu item Display = Dimension order in Section 1.6.5.2).

The metric pane provides only the metric tree browser. The call pane offers a call tree
browser and a flat call profile. The system pane has a system tree browser. Tree browsers
also provide a context menu.

1.5. Using the Display

1.5.2.1 Menu Bar

The menu bar consists of four menus: a file menu, a display menu, a plugin menu and a

help menu.

Some menu functions also have a keyboard shortcut, which is written besides

the menu item's name in the menu. E.g., you can open a file with Ctrl+O without going
into the menu. A short description of the menu items is visible in the status bar if you
stay for a short while with the mouse above a menu item.

1. File:

a)

b)

c)

d)

e)

g)

The file menu offers the following functions:

Open (Ctrl+0): Offers a selection dialog to open a CUBE file. In case of an
already opened file, it will be closed before a new file gets opened. If a file
got opened successfully, it gets added to the top of the recent files list (see
below). If it was already in the list, it is moved to the top.

Save as (Ctrl+S): Offers a selection dialog to save a copy of a CUBE file.
Opened CUBE file stays loaded in cube.

Close (Ctrl+W): Closes the currently opened CUBE file. Disabled if no file
is opened.

Open external: Opens a file for the external percentage value mode (see
Section 1.5.2.2).

Close external: Closes the current external file and removes all correspond-
ing data. Disabled if no external file is opened.

Ydeprecated

Connect to trace browser: This menu item is only visible if a CUBE file
with a corresponding statistics file, containing information about the most se-
vere instances of certain performance patterns, is open and CUBE was con-
figured for remote trace browsing. In this case, it offers to connect to a trace
browser (i.e., Vampir or Paraver) to examine the behaviour of the program
around the most severe pattern instances. For an in-depth explanation of this
feature see subsection 1.6.7.2.

Settings: This menu item offers the saving, loading, and the deletion of set-
tings. There are two types of settings, the global settings and the experiment
settings.

The global settings don't depend on the loaded cube file and are saved in
a system specific format. These settings e.g. store the appearance of the
application like the widget sizes, color and precision settings, the order of
panes, etc. The default settings are automatically saved on exit and restored
at startup, but it is also possible to save several settings under different names.

The experiment settings depend on the loaded cube file. They allow to store
e.g. which tree nodes are selected and which are expanded, the selected value
mode etc. These settings are saved next to the opened cube file in the file

Chapter 1.

Cube User Guide

h)

)
7

cubebasename.ini. When saving experiment settings, the global settings are
also saved in the .ini file. Like global settings, the default experiment settings
are automatically saved and restored, but another behaviour may be chosen
in the Settings menu. If the experiment settings toolbar is enabled, named
settings can be selected and be saved in the .ini file.

Screenshot: The function offers you to save a screen snapshot in a PNG
file. Unfortunately the outer frame of the main window is not saved, only the
application itself.

Quit (Ctrl+Q): Closes the application.

Recent files: The last 5 opened files are offered for re-opening, the top-most
being the most recently opened one. A full path to the file is visible in the
status bar if you move the mouse above one of the recent file items in the
menu.

2. Display: The display menu offers the following functions:

a)

b)

Dimension order: As explained above, CUBE has three resizable panes.
Initially the metric pane is on the left, the call pane is in the middle, and
the system pane is on the right-hand side. However, sometimes you may be
interested in other orders, and that is what this menu item is about. It offers
all possible pane orderings. For example, assume you would like to see the
metric and call values for a certain thread. In this case, you could place the
system pane on the left, the metric pane in the middle, and the call pane on the
right, as shown in Figure 1.3 . Note that in panes to the left of the metric pane
no meaningful valuescan be presented, since they miss a reference metric; in
this case values are specified to be undefined, denoted by a “-" (minus) sign.

General coloring: Allows for selection of color maps and changing of color
settings in a new dialog. In the configuration dialog, the Ok button applies
the settings to the display and closes the dialog, the Apply button applies the
settings to the display, and Cancel cancels all changes since the dialog was
opened (even if “Apply" was pressed in between) and closes the dialog.

1. default: Default color map for Cube. The configuration dialog is show
in Figure 1.4 . At the top of the dialog you see a color legend with
some vertical black lines, showing the position of the color scale start,
the colors cyan, green, and yellow, and the color scale end. These lines
can be dragged with the left mouse button, or their position can also be
changed by typing in some values between 0.0 (left end) and 1.0 (right
end) below the color legend in the corresponding spins.

The different coloring methods offer different functions to interpolate
the colors at positions between the 5 data points specified above.

With the upper spin below the coloring methods you can define a thresh-
old percentage value between 0.0 and 100.0, below which colors are

1.5. Using the Display

File Display Plugins Help

Absolute

v | | Absolute v | | Absolute v

E System tree E Topology O ! > E Metric tree E Call tree Flat view

& O - IBM BG/P g [10.00 Time (sec) |~ | [E-@0.01 bt ~
2 O - ROO-MO-NO 41.32 Execution e+ [0.00 mpi_setup
& [J - Process O 0.13 MPI [0.00 MPI_Bcast
- Thread 0 0.35 OMP e 0.00 env_setup
O -Thread 1 0.03 Overhead - 0.00 zone_setup
M -Thread 2 O 0.00 Idle threads e 0.00 map_zones
- Thread 3 - 1.64e4 Visits (occ) @ 0.00 zone_starts
B[] -Process 1 e+ [2 Synchronizations (- 0.00 set_constants
O -Thread 0 o @ 1218 Communicatio e+ [0.13 initialize
i -Thread 1 e+ [5.65&7 Bytes transf e+ [0.04 exact_rhs
- - Thread 2 &+ [20.61 Computationa 6 0.09 exch_gbc
L[-Thread 3 e+ [41.00 adi
B[- Process 2 [0.00 MPI_Barrier
- - Thread 0 e+ [l 0.03 verify
F - Thread 1 [0.00 MPI_Reduce
M -Thread 2 W - 0.00 print_results
| — -] — & [0.00 MPI_Finalize)
AI_
All (128 elements) v e ()
0.00 0.00 Eoo 41.32 (98.77%) 4183 Eoo 41.00 (99.23%) 41.32
Ready 2

Figure 1.3: Modified pane order via the menu “Display = Dimension order”

ii.

lightened. The nearer to the left end of the color scale, the stronger the
lightening (with linear increase).

With the spin at the bottom of the dialog you can define a threshold
percentage value between 0.0 and 100.0 , below which values should be
colored white.

Advanced Color Maps Cube plugin which provides additional color
maps. The configuration dialogs are presented in Figure 1.5 . For every
color map, the plot allows for change of data accepted by color map and
one can do that using left and right marker, by dragging the marker or
providing exact position through a double click near the marker value
(new dialog will appear). The default color for values out of range is
grey.

One can change colors of scheme (for some color maps) and color for
values out of range. Double mouse click on proper part of the plot opens
a dialog with selection of RGB color. Additionally, one can adjust the
plot marker or reset to default values through the context menu.
Currently the plugin adds four different sets of color maps:

A. Sequential: Scheme is defined by starting and ending color with lin-

Chapter 1. Cube User Guide

0.0

1.0
Start at Cyan at Green at Yellow at End at
000 [2|[o10 [§l[oz0 [3f[oz0 [3][100 [5]

Coloring method

Linear
Quadratic 1
Quadratic 2
Exponential 1
@ Exponential 2
Lighten colors for values under
this percentage of the maximal value:
Use white to color values under
this percentage in the value range:

[ok HX(Zance\H JApplyl

[0.00 =

K0

Figure 1.4: The color dialog opened via the menu ”Display = General coloring”

ear or exponential interpolation between them. Predefined schemes
provide simple interpolation from one color to pure white. Middle
marker allows for subtle change of interpolation.

. Divergent: This scheme is defined by an interpolation from starting

to ending color, but with a critical value between them, depicted
with the pure white. The position of critical point can be set with the
middle marker.

. Cubehelix: Scheme designed primarily for display of astronomical

intensity images. The coloring is based on distribution from black to
white, with R, G and B helixes giving additional deviations. Cube-
helix is defined by four parameters:

Start colour - starting value for color, floating-point number between
0.0and3.0.R=1,G=2,B=0

Rotations - floating-point number of R -> G -> B rotations from the
start to the end. Negative value corresponds to negative direction of
rotation.

Hue - non-negative value which controls saturation of the scheme,
with pure greyscale for hue equal to 0.

Gamma factor - non-negative value which configures intensity of
colours. Values below one emphasizes low intensity values and cre-
ates brighter color scheme. Values above one emphasizes high in-
tensity values and generates darker color map.

Reference: Green, D. A., 2011, ‘A colour scheme for the display of
astronomical intensity images', Bulletin of the Astronomical Society
of India, 39, 289.

10

1.5. Using the Display

- Coler map configuration - Color map configuration
Interpolation method: Linear - Interpolation method: Exponential -
Greyscale - Oranges -
0.75 10.23.
Y.
T T T
0.00 1.00 0.00 1.00
- Color map configuration .~ Color map configuration
CubicYF - cubic-law lightness -
Start colour 2

Description Rainbow colormap with cubic-law
Number of rotations -1.5 lightness. Used for representation of interval data
without external lighting.

Hue parameter 1

R, G, B and greyscale h

0.00 1.00

|

0.00 1.00

Figure 1.5: The examples of configuration for Advanced Color Maps. Upper row, start-
ing from left: sequential, divergent; lower row, starting from left: cubehelix,
improved rainbow.

D. Improved rainbow colormap: Set of color maps based on original
jet (rainbow) scheme, but with different lightness distribution. The
goal behind these schemes is to provide map with more balanced
perception, which is poor for original jet, mainly because of sharp
changes in lightness. These maps doesn't provide any possibility for
configuration.

Reference: Perceptually improved colormaps, MATLAB Central

c) Precision: Activating this menu item opens a dialog for precision settings
(see Figure 1.6). Besides Ok and Cancel, the dialog offers an Apply button,
that applies the current dialog settings to the display. Pressing Cancel undoes
all changes due to the dialog, even if you already pressed Apply previously,
and closes the dialog. Ok applies the settings and closes the dialog.

It consists of two parts: precision settings for the tree displays, and precision
settings for the selected value info widgets and the topology displays. For
both formats, three values can be defined:

11

Chapter 1. Cube User Guide

1.

11.

1il.

Display in trees:

Mumber of digits after decimal point: [2 |%]
Exponent representation above 107k with x: [4 l%]
Display zero for values below 107 () with x: [7 '%]
Display in the value widget under the tree widgets and in topologies:

Number of digits after decimal point: [2 l%]
Exponent representation above 107k with x: [4 '%]
Display zero for values below 107 () with x: [7 '%]

l €0K H x Cancel wApply l

Figure 1.6: Display = Precision

Number of digits after the decimal point: As the name suggests, you
can specify the precision for the fraction part of the values. E.g., the
number 1.234 is displayed as 1.2 if you set this precision to 1, as 1.234
if you set it to 3, and as 1.2340 if you set it to 4.

Exponent representation above 10* with x: Here you can define above
which threshold scientific notation should be used. E.g., the value 1000
is displayed as 1000 if this value is larger then 3 and as 1e3 otherwise.

Display zero values below 10~ with x: Due to inexact floating point
representation, it often happens that users wish to round down values
very near by zero to zero. Here you can define the threshold below which
this rounding should take place. E.g., the value 0.0001 is displayed as
0.0001 if this value is larger than 3 and as zero otherwise.

d) Trees: This menu item offers two sub-items:

1.

il.

Font: Here you can specify the font, the font size (in pt), and the line
spacing for the tree displays (see Figure 1.7). The Ok button applies the
settings to the display and closes the dialog, the Apply button applies
the settings to the display, and Cancel cancels all changes since the di-
alog was opened (even if Apply was pressed in between) and closes the
dialog.

Selection marking: Here you can specify if selected items in trees
should be marked by a blue background or by a frame.

e) Optimize width: Under this menu item CUBE offers widget rescaling such
that the amount of information shown is maximized, i.e., CUBE optimally
distributes the available space between its components. You can chose if you
would like to stick to the current main window size, or if you allow to resize

it.

12

1.5. Using the Display

Font:

[Dejauu Sans - l
Size [pt]:

E s
Line spacing [pixel]:

E :

[& ox HXCancel”J;\pply

Figure 1.7: The font dialog opened via the menu “Display = Trees = Font”

3. Plugins: The plugin menu allows the user to define which plugins are laoded. For
each loaded plugin, a submenu is added. The submenu contains a menu item to
enable or disable the plugin and the plugin may add additional menu items.

a) Initial activation settings: Opens a dialog to define which plugins should be
loaded.

4. Help: The help menu provides help on usage and gives some information about
CUBE.

a) Getting started: Opens a dialog with some basic information on the usage
of CUBE.

b) Mouse and keyboard control: Lists mouse and keyboard controls as given
in Section 1.6.8.

c) What's this?: Here you can get more specific information on parts of the
CUBE GUL If you activate this menu item, you switch to the “What's this?"
mode. If you now click on a widget, an appropriate help text is shown. The
mode is left when help is given or when you press Esc.

Another way to ask the question is to move the focus to the relevant widget
and press Shift+F1.

d) About: Opens a dialog with release information.

e) Selected metric description: Opens a new window showing the description
of the currently selected metric, equivalent to Online description in the metric
tree context menu. Disabled if online information is unavailable.

f) Selected region description: Opens a new window showing the description
of the currently selected region, equivalent to Online description in the call-
tree context menu. Disabled if online information is unavailable.

13

Chapter 1. Cube User Guide

1.5.2.2 Value modes

Each tree view has its own value mode combobox, a drop-down menu above the tree,
where it is possible to change the way the severity values are displayed.

The default value mode is the Absolute value mode. In this mode, as explained below,
the severity values from the CUBE file are displayed. However, sometimes these values
may be hard to interpret, and in such cases other value modes can be applied. Basically,
there are three categories of additional value modes.

* The first category presents all severities in the tree as percentage of a reference

value. The reference value can be the absolute value of a selected or a root node
from the same tree or in one of the trees on the left-hand side. For example, in the
Own root percent value mode the severity values are presented as percentage of
the own root's (inclusive) severity value. This way you can see how the severities
are distributed within the tree. All the value modes (Own root percent — System
selection percent) fall into this category.

All nodes of trees on the left-hand side of the metric tree have undefined values.
(Basically, we could compute values for them, but it would sum up the severities
over all metrics, that have different meanings and usually even different units, and
thus those values would not have much expressiveness.) Since we cannot compute
percentage values based on undefined reference values, such value modes are not
supported. For example, if the call tree is on the left-hand side, and the metric tree
is in the middle, then the metric tree does not offer the Call root percent mode.

The second category is available for system trees only, and shows the distribution
of the values within hierarchy levels. E.g., the Peer percent value mode displays
the severities as percentage of the maximal value on the same hierarchy depth. The
value modes (Peer percent — Peer distribution) fall into this category.

Finally, the External percent value mode relates the severity values to severities
from another external CUBE file (see below for the explanation).

Depending on the type and position of the tree, the following value modes may be
available:

1. Absolute (default): Available for all trees. The displayed values are the severity

value as read from the cube file, in units of measurement (e.g., seconds). Note that
these values can be negative, too, i.e., the expression “absolute" in not used in its
mathematical sense here.

. Own root percent:Available for all trees. The displayed node values are the per-

centage of their absolute values with respect to the absolute value of their root node
in collapsed state.

. Metric root percent: Available for trees on the right-hand side of the metric tree.

The displayed node values are the percentage of their absolute values with respect
to the absolute value of the collapsed metric root node. If there are several metric

14

1.5. Using the Display

roots, the root of the selected metric node is taken. Note, that multiple selection
in the metric tree is possible within one root's subtree only, thus there is always a
unique metric root for this mode.

4. Metric selection percent: Available for trees on the right-hand side of the metric
tree. The displayed node values are the percentage of their absolute values with re-
spect to the selected metric node's absolute value in its current collapsed/expanded
state. In case of multiple selection, the sum of the selected metrics' values for the
percentage computation is taken.

5. Call root percent: Available for trees on the right-hand side of the call tree. Simi-
lar to the metric root percent, but the call tree root instead of the metric tree root is
considered. In case of multiple selection with different call roots, the sum of those
root values is considered.

6. Call selection percent: Available for trees on the right-hand side of the call tree.
Similar to the metric selection percent, percentage is computed with respect to
the selected call node's value in its current collapsed/expanded state. In case of
multiple selections, the sum of the selected call values is considered.

7. System root percent: Available for trees on the right-hand side of the system
tree. Similar to the call root percent, the sum of the inclusive values of all roots of
selected system nodes are considered for percentage computation.

8. System selection percent:Available for trees on the right-hand side of the system
tree. Similar to the call selection percent, percentage is computed with respect to
the selected system node(s) in its current collapsed/expanded state.

9. Peer percent:For the system tree only. The peer percentage mode shows the per-
centage of the nodes' inclusive absolute values relative to the largest inclusive ab-
solute peer value, i.e., to the largest inclusive value between all entities on the
current hierarchy depth. For example, if there are 3 threads with inclusive absolute
values 100, 120, and 200, then they have the peer percent values 50, 60, and 100.

10. Peer distribution:For the system tree only. The peer distribution mode shows the
percentage of the system nodes' inclusive absolute values on the scale between the
minimum and the maximum of peer inclusive absolute values. For example, if
there are 3 threads with absolute values 100, 120 and 200, then they have the peer
distribution values 0, 20 and 100.

11. External percent: Availabl