
Intel® Cluster Checker
Developer’s Guide

Version 3.1.2

January 15, 2016

3

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION
WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR IN-
FRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A ”Mission Critical Application” is any application in which failure of
the Intel Product could result, directly or indirectly, in personal injury
or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND
AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF
EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT
OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at
any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked ”reserved” or
”undefined”. Intel reserves these for future definition and shall have
no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The products described in this document may contain design defects
or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on
request.

Requires a system with a 64-bit enabled processor, chipset, BIOS and
software. Performance will vary depending on the specific hardware
and software you use. Consult your PC manufacturer for more informa-
tion. For more information, visit http://www.intel.com/info/em64t

Contact your local Intel sales office or your distributor to obtain the
latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced
in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

4

Intel, the Intel logo, the Intel Inside logo, Xeon, and Xeon Phi are
trademarks of Intel Corporation in the U.S. and/or other countries.

Optimization Notice

Intel compilers may or may not optimize to the same degree for non-
Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee
the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation. All rights reserved.

5

Contents

1 Introduction 7

1.1 End-to-end Extension Example 7

1.2 Extending Intel® Cluster Checker 7

2 Embedding Intel® Cluster Checker 9

3 Data Providers 10

3.1 Introduction . 10

3.2 Running a data provider . 11

3.3 Configuration . 11

3.3.1 Preset Environment Variables 11

3.4 Definition . 12

3.5 Example . 15

3.5.1 Basic Data Provider . 15

3.5.2 Configurable Command 16

4 Knowledge Base 17

4.1 Background . 17

4.1.1 Brief Overview of Expert Systems 17

4.1.2 CLIPS . 17

4.2 Overview of the Intel® Cluster Checker Knowledge Base . . . 18

4.2.1 Key Concepts . 18

4.2.1.1 Signs . 18

4.2.1.2 Diagnoses . 19

4.2.1.3 Remedies . 19

4.2.2 Basic Implementation 20

6 CONTENTS

4.2.2.1 Classes . 20

4.2.2.2 Rules . 20

4.2.2.3 Signs . 20

4.2.3 Organization and Directory Structure 21

4.3 Automatically Created Objects 21

4.4 Configurability . 22

4.5 Example . 23

4.5.1 Class Definition . 23

4.5.2 Rules . 24

4.5.2.1 Rule 1: Missing good output 24

4.5.2.2 Rule 2: Error case 25

4.5.2.3 Rule 3: Uniformity 25

4.5.2.4 Rule 4: Diagnosis 27

4.6 Developing with CLIPS . 28

4.6.1 Editor . 28

4.6.2 Style . 28

4.6.3 Debugging and Profiling 28

5 Connector 30

5.1 Overview . 30

5.2 Extensions . 30

5.2.1 Transform Class Members 31

5.3 Database Interface . 31

5.3.1 Output and Encoding 32

5.4 Knowledge Base and CLIPS Interface 32

5.4.1 Creating CLIPS Class Instances 33

5.4.2 Parsing database output 33

5.4.3 Handling Parse Errors 33

5.5 Building Extensions . 33

5.6 Loading Extensions . 33

5.7 Example . 34

A Database Schema 35

7

Chapter 1

Introduction

Intel® Cluster Checker verifies the configuration and performance of
Linux-based clusters and checks compliance with the Intel® Cluster
Ready architecture specification. If issues are found, Intel® Cluster
Checker diagnoses the problems and may provide recommendations on
how to repair the cluster.

This guide describes how developers can extend the tool or embed
it into other software. For information on how to use Intel® Cluster
Checker, please read the User’s Guide.

Chapter 2 describes how to embed Intel® Cluster Checker functionality
into other software.

1.1 End-to-end Extension Example

A single end-to-end example is used in Chapters 3, 4, and 5 to help
illustrate how to extend Intel® Cluster Checker. In the example, the
fictional Waterfowl Industries has developed the duck diagnostic tool.
This program comprehensively evaluates nodes using its trade secret
methodology and rates them on its patented “quack” scale. A node
is rated between 1 and 5 “quacks”, 5 being best, or if there is an error
during the evaluation, prints “honk”.

This example is used to illustrate the flow of data through Intel® Cluster
Checker in Figure 1.1.

1.2 Extending Intel® Cluster Checker

The steps required extend Intel® Cluster Checker depend on the
amount of data already available. Refer to the corresponding chapter(s)
depending on the scenario, starting from the bottom of Figure 1.1 and
working up:

• If the data is already available in the knowledge base and the goal
is to write new or modify existing rules, see Chapter 4.

8 Introduction

clck-collect -p duck.xml -f nodefile

... Provider Hostname STDOUT ...
duck node01 quack quack quack
duck node02 quack quack
duck node03 honk

duck.xml:

Data Provider

Database

Connector

<command>/path/to/duck</command>

...

Knowledge Base

(defclass DUCK
...
(slot count)
(slot sound))

classes/duck.clp:

Read data from database
Transform data, e.g, regular expression
Create CLIPS instances

(make-instance of DUCK (node id node01)
(count 3) (sound ”quack”))
(make-instance of DUCK (node id node02)
(count 2) (sound ”quack”))
(make-instance of DUCK (node id node03)
(count 1) (sound ”honk”))

Figure 1.1 – Flow of data through
Intel® Cluster Checker

• If the data is already available in the database but is not already
available in the knowledge base, see Chapters 4 and 5.

• If the data is not available in the database, see Chapters 3, 4, and
5.

9

Chapter 2

Embedding Intel® Cluster Checker

A C++11 interface is provided to enable software to embed In-
tel® Cluster Checker capabilities. The application programming
interface (API) documentation is a separate document located at
/opt/intel/clck/3.1.2/doc/analysis_api.pdf. Tip: The API documentation is

generated by Doxygen style comments
embedded in the header.The API is defined in /opt/intel/clck/3.1.2/include/clck.h. Include

this header in any source code that is embedding Intel® Cluster Checker
and add -Wl,-rpath,/opt/intel/clck/3.1.2/lib/intel64 -lclck
when linking. If not using the environment setup scripts, clckvars.sh
and clckvars.csh, then -I/opt/intel/clck/3.1.2/include and
-L/opt/intel/clck/3.1.2/lib/intel64 also need to be added to the
compile and link commands, respectively.

At a minimum, a program embedding Intel® Cluster Checker would
call analyze() followed by get_faults(). Additional functions and
configuration options may also be set. The database, connector
extensions, and knowledge base are external and their locations need to
be specified.

An example is provided in /opt/intel/clck/3.1.2/samples/api that
embeds Intel® Cluster Checker into Message Passing Interface (MPI)
programs written in C, C++, Fortran 77, and Fortran 90. Intel® Cluster
Checker is called by the first MPI rank immediately after MPI initializa-
tion to verify the cluster is performing correctly before starting the main
task. If any serious performance issues are detected, the program is
aborted before any sub-par “computation” occurs.

10

Chapter 3

Data Providers

3.1 Introduction

Data providers define the data to be gathered from nodes. A data
provider is a metadata file, specifically an XML file, that specifies the
command to run, how often it should be run, etc. Additional files
may be associated with data providers, such as shell scripts to wrap
functionality more complex than a command line, input data sets, etc.

Standard output and standard error of the data provider are saved in
the database. Data providers should not perform unnecessary filtering
of the output. The philosophy is to output raw, unfiltered data and
let the connector (see chapter 5) filter the data into a form usable by
the knowledge base. For example, a well-formed data provider would
execute cat /proc/cpuinfo to obtain the complete set of information
stored in this file rather than the more specific cat /proc/cpuinfo |
grep "model name" | uniq to obtain the cpuid string. The cpuid string,
in addition to lots of other useful data - including uses not currently
envisioned, can be obtained from the complete output.

Most providers will be local and only collect data from the machine they
ran on. These are termed single node data providers. However, some
providers collect data from multiple nodes and are termed cluster data
providers. Cluster providers will be supplied with a list of nodes (see
section 3.3.1) and do not need worry about how the list is generated.
Cluster data providers may be called multiple times with different sets
or permutations of nodes.

Data Providers 11

3.2 Running a data provider

Data providers may be either invoked on-demand or run asyn-
chronously. Please see the Data Collection chapter of the User’s Guide
for more information about these modes.

An easy way to test a data provider is to run it in on-demand mode.
First, run the data provider with the clck-collect tool, e.g., clck-
collect -p /path/to/myprovider.xml -f nodefile. Then, verify the
output is correct and stored in the database with the clckdb tool, e.g.,
clckdb --provider=myprovider.

Note that before the provider file is parsed, the ownership and
permissions of the XML file are verified. The XML file must be owned
either by root or the user collecting the data. The XML file must also
not be writable by a user other than the file owner. If either of these
conditions is not satisfied, the data provider will not be run. These
conditions are in place to avoid potential security issues.

3.3 Configuration

In most scenarios, data providers should written such that they do not
require configuration. For example, a benchmark data provider should
automatically set its input problem size based on querying the node
rather than requiring the user to specify the size.

In cases where it may be necessary to override the default values,
use environment variables. The recommendation is to prefix the
environment variable with CLCK_PROVIDER_PROVIDER-NAME where
PROVIDER-NAME should be replaced with the name of the provider. For
example, if the provider is named duck, the CLCK_PROVIDER_DUCK_CMD
could examined to override the default path to the duck command. Note
that the data provider must handle the environment variables itself;
there is no automatic handling provided by Intel® Cluster Checker.

3.3.1 Preset Environment Variables

The following environment variables are automatically set by In-
tel® Cluster Checker.

CLCK_DP_NODEFILE

For cluster data providers, this variable contains the path to the
supplied nodefile. The nodefile contains a list of node hostnames,
one per line. For single node data providers, this environment
variable is undefined.

CLCK_TIMEOUT

This variable contains the number of seconds until the data
provider is forcibly timed out. If a data provider needs to do some
additional cleanup, it should set an internal time out less than this
value.

12 Data Providers

3.4 Definition

Each data provider is defined by a XML configuration file. This section
describes the XML tags.

The name of the data provider is derived from the filename of the XML
file, without the .xml extension.

The base data provider format is:

<configuration>
<adhoc_cluster_invite_time> </adhoc_cluster_invite_time>
<architecture> </architecture>
<command> </command>
<disable/>
<encoding> </encoding>
<loadavg> </loadavg>
<max_nodes> </max_nodes>
<min_nodes> </min_nodes>
<nodelist/>
<period> </period>
<role> </role>
<timeout> </timeout>
<version> </version>

</configuration>

The tags understood by the data provider configuration parser are as
follows. All the tags are optional with the exception of <command>.

<adhoc_cluster_invite_time> integer </adhoc_cluster_invite_-
time>

This value is the amount of time (in seconds) that clckd will wait
for responses from other daemons when an ad hoc cluster is
required. At the end of the specified time, if the number of nodes
in the ad hoc cluster is less than the <min_nodes> tag of the
provider, the provider is not run and the daemon continues with
the execution of the next provider.

The default value is 10 seconds.

This tag is only used for the combination of asynchronous data
collection and cluster data providers.

<architecture> k1om | x86_64 </architecture>

If the value of this tag differs from the architecture of the node, the
data provider will not be run.

The default value is empty, meaning to run on any architecture.

<command> string </command>

Command is the key provider metadata. The value specifies the
shell command to be run. The value may be a simple command,
or it might call a script that executes a series of commands. The
contents of standard output and standard error are saved and
stored in the database. Tip: A data provider should not assume

it is running in any particular directory.
If the command is not located in
a directory contained in the PATH
environment variable, then the full path
should be specified in the command
tag.

If the data provider depends on additional files, such as a
script or input data set, the recommended location for these
files is a sub-directory with the same name as the provider in

Data Providers 13

/opt/intel/clck/3.1.2/provider/share. The string token
%PROVIDER_AUXILIARY_PATH% can be used in the command tag as
an alias for this base directory.

The default value of %PROVIDER_AUXILIARY_PATH% is /opt/intel/
clck/3.1.2/provider/share and can be overridden by changing
the corresponding setting in /opt/intel/clck/3.1.2/etc/clckd.
xml.

<disable/>

This parameter is a Boolean value denoting whether the provider
should run or not.

The default value is false.

<encoding> value </encoding>

The encoding parameter is the encoding format to be applied to
the standard output and standard error of the command before
the output is stored in the database. Tip: This tag should be used if the

output will contain non-text data.
Values allowed are:
ENCODING_NONE
ENCODING_BASE64
ENCODING_RAW
The default value is ENCODING_NONE and output is not encoded.

<loadavg> number </loadavg>

If the current value of the 1 minute load average exceeds the value
of this tag, clckd will not run the data provider.

If the specified value is larger the global load average threshold
(defined /opt/intel/clck/3.1.2/etc/clckd.xml), then this value
will be ignored.

The default value is 1.0.

This tag is only used for asynchronous data collection. It is ignored
in on-demand mode.

<max_nodes> integer </max_nodes>

This tag specifies the maximum number of nodes to use when
running a cluster provider.

The default value is 1.

When running a cluster provider, both the <min_nodes> and
<max_nodes> tags are compulsory, and the <max_nodes> value must
be greater than or equal to <min_nodes>.

<min_nodes> integer </min_nodes>

This tag specifies the minimum number of nodes to use when
running a cluster provider.

This tag defines whether a provider is a single node provider or a
cluster provider. Any value above 1 specifies that the provider is
a cluster provider. A value of 1, or omitting this tag, specifies that
the provider is a single node provider.

When a value higher than 1 is specified, the <max_nodes> tag is
required.

The default value is 1.

<nodelist method="value" number="integer"/>

This tag specifies how the nodes in the node list provided to
cluster data provider will be permuted. This tag only applies to

14 Data Providers

cluster providers, and only takes effect when data is collected
on-demand.

The “method“ attribute defines the algorithm to use to permute
the node list.

Valid options for the “method“ attribute are “none“, “rotate_left“,
“rotate_right“, “round_robin“ and “random“.

With the “none“ value, the “number“ attribute defaults to 1 and the
nodelist will be used as is without permutations.

With the “rotate_left“ value, the first node in the node list is
popped off and pushed onto the end of the list successively for
each iteration.

With the “rotate_right“ value, the last node in the node list is
popped off and pushed onto the beginning of the list successively
for each iteration.

With the “round_robin“ value, the nodes are permuted based on a
round robin tournament scheduling algorithm.

With the “random“ value, the nodes are shuffled randomly to
generate new node lists for each permutation.

The “number“ attribute defines the number of permutations that
will be generated for a given node list.

The value 0 specifies that all possible permutations for a given
method should be generated. This value of 0 is however ignored
for “none“ and “random“ methods, and a value of 1 will be used
instead.

Additionally, if the specified number is greater than the maximum
number of permutations needed to generate all possible
combinations for the given method, then the lower value will be
used.

The default method is “none“ and the default number of
permutations is 1.

<period> integer </period>

This tag specifies the minimum number of seconds to wait
between invocations of the data provider by clckd.

A value of ”0” is special and means that the provider should be run
only once. This execution typically happens only right after the
clckd starts.

The default value is 60 seconds.

This tag is only used for asynchronous data collection. It is ignored
in on-demand mode.

<priority> integer </priority>

This parameter is the operating system scheduling priority (aka
the ”nice” value).

The default value is 0.

This tag is optional and is currently unimplemented.

This tag is only used for asynchronous data collection. It is ignored
in on-demand mode.

<role> value </role>

The data provider will only run on nodes that have the corre-
sponding node role.

Data Providers 15

Role Description

boot Provides software imaging / provisioning
capabilities

compute Is a compute resource
enhanced Provides enhanced compute resources, e.g.,

contains additional memory
external Provides an external network interface
head Alias for the union of boot, external, job_schedule,

login, network_address, and storage
job_schedule Provides resource manager / job scheduling

capabilities
login Is an interactive login system
network_-
address

Provides network address to the cluster, e.g., DHCP

storage Provides network storage to the cluster, e.g., NFS

Table 3.1 – Node Roles

Allowed values are specified in Table 3.1.

If this tag is not specified, the default behavior is to run on all node
roles.

This tag may be specified multiple times to run on multiple node
roles.

<timeout scale="value"> integer </timeout>

This tag specifies the amount of time (in seconds) to wait before
forcibly terminating the provider to prevent hanging.

The scale attribute specifies the rate at which the timeout value
should increase based on the number of nodes, in the case of a
cluster provider.

Valid options for the scale attribute are “constant”, “linear”,
“squared”, and “logarithmic”. “constant” does not scale with the
number of nodes used, “linear” scales linearly with the number
of nodes (e.g. timeout ∗ num_nodes), “squared” scales with the
number of nodes squared (e.g. timeout ∗ num_nodes2), and
“logarithmic” scales logarithmically with the number of nodes (e.g.
timeout ∗ ln((e− 1) + num_nodes)).

The default and the minimum value is 60 seconds.

The default scale is “constant”.

<version> integer </version> Tip: The version tag should be
incremented any time the output
format of the data provider changes.
If the data provider changes but the
output format remains the same, then
the value of this tag does not need to
be updated.

This tag specifies the version of the output format. The connector
may use the value of this tag to parse the output differently.

The default value is 1.

3.5 Example

3.5.1 Basic Data Provider
Tip: Data providers can be tested
in on-demand mode. Assuming
the data provider is located in
$HOME/duck.xml, run the data provider
with the command clck-collect -p
$HOME/duck.xml -f nodefile and verify
the output is saved in the database with
the command clckdb --provider=duck.

The most basic “duck” data provider is shown below. This provider
runs the configured command once per day in asynchronous mode, or
whenever invoked in on-demand mode.

16 Data Providers

<?xml version="1.0"?>
<configuration>
<!-- Assume that duck.sh is located in the default Intel(R)

Cluster Checker install directory. -->
<command>%PROVIDER_AUXILIARY_PATH%/duck/duck.sh</command>

<!-- Run once per day in asynchronous mode. -->
<period>86400</period>

</configuration>

A sample “duck” data provider is located at /opt/intel/clck/3.1.
2/samples/provider.

3.5.2 Configurable Command

The data provider can be made configurable via an environment
variable. For instance, if the data provider is a shell script:

#!/bin/sh

default to use if $CLCK_PROVIDER_DUCK_CMD is not defined
CMD=/opt/waterfowl/3.14/bin/duck

if [-n "${CLCK_PROVIDER_DUCK_CMD}"] ; then
CMD=${CLCK_PROVIDER_DUCK_CMD}

fi

exec $CMD

The value of CLCK_PROVIDER_DUCK_CMDmay be set by adding the
following to /opt/intel/clck/3.1.2/etc/clckd.xml or a custom
configuration file:

<configuration>
<provider>
<duck>

<cmd>/path/to/duck</cmd>
</duck>

</provider>
</configuration>

CLCK_PROVIDER_DUCK_CMDmay also be set in the shell initialization file,
e.g., $HOME/.bashrc.

See the Reference Manual for more information about configuring data
providers.

17

Chapter 4

Knowledge Base

4.1 Background

4.1.1 Brief Overview of Expert Systems

Intel® Cluster Checker is an expert system. A classic definition of an
expert system is ”an intelligent computer program that uses knowledge
and inference procedures to solve problems that are difficult enough
to require significant human expertise for their solutions.” The problem Edward A. Feigenbaum, ”Knowledge

Engineering in the 1980s”, Stanford
University Computer Science
Department, 1982

that Intel® Cluster Checker solves is diagnosing system level issues with
Beowulf style clusters.

Two main elements are called out in this definition, knowledge
and inference procedures. Knowledge comes from two sources,
observations about an actual system, and if/then rules that encapsulate
human expertise. Intel® Cluster Checker relies on data providers to
make observations about the cluster and saves the result in a database
(see Chapter 3).

Expert systems differ from typical procedural programs in there is not
a fixed order of execution. The order is logically inferred, using one of
several common schemes such as the Rete algorithm, by dynamically http://en.wikipedia.org/wiki/Rete_

algorithmanalyzing the interdependence of rules and facts.

One limitation of expert systems is that they are only as good as the
knowledge (rules) they contain. To remain relevant, a knowledge base
needs to continually grow and change as new and variant cases are
uncovered. This chapter addresses how to express human expertise
as knowledge base rules to extend the diagnostic capabilities of
Intel® Cluster Checker. Please consider contributing extensions to the
Intel® Cluster Checker team so that other users can also benefit.

4.1.2 CLIPS

The C Language Integrated Production Systems (CLIPS) was originally http://clipsrules.sourceforge.net/

created in the 1980s at NASA’s Johnson Space Center. CLIPS is an
Joseph Giarratano and Gary Riley,
Expert Systems: Principles and
Programming, Thomson Course
Technology, 2005.

expert system shell that combines an inference engine with a language
for representing knowledge. Like many AI environments, the CLIPS
language is very similar to LISP.

http://en.wikipedia.org/wiki/Rete_algorithm
http://en.wikipedia.org/wiki/Rete_algorithm
http://clipsrules.sourceforge.net/

18 Knowledge Base

More recently CLIPS added object oriented capabilities. Intel® Cluster
Checker is based on the CLIPS Object Oriented Language (COOL).

The CLIPS User’s Guide is an excellent, duck filled, introduction to CLIPS
(http://clipsrules.sourceforge.net/documentation/v630/ug.pdf).

4.2 Overview of the Intel® Cluster Checker Knowl-
edge Base

4.2.1 Key Concepts

Intel® Cluster Checker is organized similarly to clinical decision support
systems. https://en.wikipedia.org/wiki/

Clinical_decision_support_system

4.2.1.1 Signs

Signs are one of the core elements of the knowledge base. Concep-
tually, a sign roughly corresponds to a symptom, such as “I have a
fever”. Signs differ from symptoms in that signs are based on objective,
measurable quantities, like the patients temperature. The patients
temperature is collected, and then a rule is run to decide whether the
temperature value qualifies as a fever or not. (A more complex rule
might distinguish between low and high fevers, for example.)

All the varieties of signs have a state slot that represents a state
diagram, where a sign is first initialized, then transitions to the observed
state when a rule is run, and finally becomes diagnosed if the sign is
used to make a diagnosis (see the next section).

The confidence and severity slots are values that range from 0
to 100. Higher values indicate higher confidence in the sign or the
item represented by the sign is more serious, respectively. The rule
that sets the sign (i.e., transitions it into the observed state) can set
the confidence and severity values. Recalling the fever analogy, the
corresponding sign may set the severity level higher depending on
the temperature, so there could be just one sign representing “I have a
fever” with a variable severity level describing whether it is a mild fever
or a dangerously high fever.

The guidelines in Table 4.1 should be used to set the confidence level
of an issue. The confidence level depends on the certainty of the data,
the certainty of the analysis, as well as the occurrence rate of the issue.
These three factors should be weighted equally, each accounting for
one third of the total confidence level, and the overall confidence level
should be the sum of the three.

Range Data certainty Analysis certainty Occurrence rate

0 - 10 Doubtful Doubtful Rare
10 - 20 Suspect Suspect Unlikely
21 - 30 Probable Probable Common
31 - 33 Near certain Near certain Very common

Table 4.1 – Confidence level guidelines.

The guidelines in Table 4.2 should be used to set the severity level of an

http://clipsrules.sourceforge.net/documentation/v630/ug.pdf
https://en.wikipedia.org/wiki/Clinical_decision_support_system
https://en.wikipedia.org/wiki/Clinical_decision_support_system

Knowledge Base 19

issue.

Range Description

0 - 20 The cluster is fully functional, but has minor performance
issues and/or does not conform to best practices.

21 - 50 The cluster is essentially functional, but has moderate
performance issues and/or a non-core capability has
minor functionality problems.

51 - 80 The cluster is minimally functional, but is severely
under-performing and/or a non-core capability is
non-functional / missing.

81 - 95 A core cluster capability is non-functional / missing.
96 - 100 A cluster component may irreparably fail if not addressed

immediately.

Table 4.2 – Severity level guidelines.

Every sign also has a id slot that corresponds to a message catalog key
(/opt/intel/clck/3.1.2/kb/data/msg_en.xmc). The message catalog
contains a string that describes the sign; typically the string is a single
sentence, but it may be longer. By convention, the id value should be
the same as the name of the rule that created it. The id value is also
used to look up the sign when making diagnoses.

Finally, the args slot contains variable values to be inserted into the
message catalog string. Together, the id and args slots are roughly
analogous to the C printf family of functions. The message catalog can
be extended by simply adding new entries.

4.2.1.2 Diagnoses

Diagnoses are made based on the value of signs. A diagnosis is also
defined by a rule. Whenever a diagnosis is made, the signs used to
make the diagnosis should be transitioned to the ’diagnosed’ state. This
is important because signs that are not used to make a diagnosis (i.e.,
left in the observed state) will be printed out as ’undiagnosed signs’.
Undiagnosed signs may indicate that the knowledge represented by the
knowledge base is incomplete, i.e., an issue was found, but could not be
root caused.

Similar to signs, diagnoses have severity, confidence, id, and args slots.
The severity and confidence slots will typically be composites of the
signs used to reach the diagnosis. For example, a diagnosis based
on a sign reached with low confidence and another sign with a high
confidence, should probably have a low to intermediate confidence
value depending on the particular case.

4.2.1.3 Remedies

Remedies describe the step(s) to perform to resolve a diagnosis,
such as change the permissions on a file or reboot a node. Remedies
are specified using two optional sign slots, remedy and remedy-
args. Similar to id, remedy corresponds to a message catalog key
(/opt/intel/clck/3.1.2/kb/data/msg_en.xmc) and remedy-args
contains variable values to be inserted into the message catalog string.
If the remedy slot is empty, then no remedy is displayed.

20 Knowledge Base

4.2.2 Basic Implementation

4.2.2.1 Classes

CLIPS classes are roughly analogous to C structures or C++ classes.
’Slots’ are to member variables as classes are to C structures. A slot
typically has some attributes, or ’facets’, defined, such as the type,
default value, etc. (see the CLIPS documentation for more information
on facets). The slots are populated with information from the database
(via the Intel® Cluster Checker connector component, see Chapter 5).

The class definition for the DUCK example follows and can also be found
at /opt/intel/clck/3.1.2/samples/kb/classes/duck.clp:

(defclass DUCK
"This class corresponds to the 'duck' node rating tool."
(is-a BASE_NODE BASE_TIMESTAMP DATABASE MULTISET)
(role concrete)
(pattern-match reactive)

(slot count (type INTEGER) (default 1))
(slot sound (type SYMBOL) (allowed-values honk quack)

(default honk)))

In addition to the explicitly defined slots, the DUCK class inherits
slots from it’s base classes. For instance, the node_id slot, which
corresponds to an unique node identifier, is inherited from BASE_-
NODE class. If the class represents a property of multiple nodes,
such as the network performance between a pair of nodes, it would
instead inherit from the NODE_PAIR or BASE_CLUSTER base classes
(/opt/intel/clck/3.1.2/kb/core/cluster.clp).

4.2.2.2 Rules

For each class, there is typically a corresponding rule file. For instance,
the DUCK class is defined in the file /opt/intel/clck/3.1.2/samples/
kb/classes/duck.clp and the corresponding rules are defined in the
file /opt/intel/clck/3.1.2/samples/kb/rules/duck.clp. Based on the
data contained in the instances, plus potentially other information such
as the hardware configuration of a node, a rule creates one or more
signs or diagnoses.

A CLIPS rule has a “left-hand side” (LHS) and a “right-hand side” (RHS),
separated by the => token. The LHS is the set of if/then conditions that
describe when the rule should “fire”. The RHS contains the action that
should be performed when the LHS conditions are met. Typically the
action is to create a sign or diagnosis.

4.2.2.3 Signs

Several varieties of signs are provided (/opt/intel/clck/3.1.2/kb/
core/sign.clp).

• BOOLEAN_SIGN represents quantities that are either true or false.
For example, a process either is in the zombie state or it is not.

Knowledge Base 21

• COUNTER_SIGN represents quantities that correspond to a count of
something. For example, the number of network retries.

• PERFORMANCE_SIGN represents a measure of performance that are
either normal, substandard, or invalid. For example, the measured
floating point performance meets expectations for the hardware
configuration, does not meet expectations, or is an invalid value
(e.g., negative, or not a number).

• Finally, GENERIC_SIGN is a general sign that can be used if one of
the preceding specialized sign classes is not appropriate.

4.2.3 Organization and Directory Structure

The knowledge base is divided into several sub-components.

• The /opt/intel/clck/3.1.2/kb/core sub-directory contains the
core data structures and message handlers used by the rest of the
knowledge base. These files should typically not be modified.

• The diagnostic knowledge is split between the /opt/intel/
clck/3.1.2/kb/classes and /opt/intel/clck/3.1.2/kb/rules
sub-directories; class definitions are part of /opt/intel/clck/3.1.
2/kb/classes while the logic defining correct and incorrect cluster
behavior is contained in the /opt/intel/clck/3.1.2/kb/rules
sub-directory.

• The /opt/intel/clck/3.1.2/kb/data sub-directory contains
lists of hardware components and their properties, as well as the
catalog of messages printed by the clck program. Tip: The lists of hardware components

do not contain every SKU. If the
observed hardware is not in the
database, then some rules may not
applicable and will not fire.

• Functions that extend the base CLIPS functionality can be put in
the /opt/intel/clck/3.1.2/kb/functions sub-directory.

Each sub-directory has a file named load.clp. This file loads the rest
of the files in the same sub-directory. If, for example, a new rules file is
added, then it needs to be added to /opt/intel/clck/3.1.2/kb/rules/
load.clp to be enabled.

Finally, the file named /opt/intel/clck/3.1.2/kb/clck3.clp in the
top level knowledge base directory loads the load.clp file in each sub-
directory. While this file should not typically be modified, commands
can be added to this file to help debug the knowledge base.

4.3 Automatically Created Objects

A NODE object is automatically created for each node being checked.
Each NODE object contains slots for the node architecture, roles, and Tip: Data objects may be created for all

the nodes in the database while only
a subset of nodes may be checked.
Therefore, it is recommended to always
use a NODE condition on the left hand
side of a rule to ensure that only the
desired nodes are checked.

subcluster membership. These slots may be used to restrict a rule to a
particular type of node.

A single instance of the CONFIG class named [config] is automatically
created and contains the input configuration parameters. The instance
name [config] is reserved for this purpose and no other instances
should use this name. This instance may be used to make the behavior

22 Knowledge Base

of a rule user configurable. See Section 4.4 for more information about
how to write configurable rules.

4.4 Configurability

The CONFIG class contains all user configurable options and is defined in
/opt/intel/clck/3.1.2/kb/core/config.clp. A single instance of this
class always exists with this reserved name. This class can be extended
by adding new slots.

The slots of the CONFIG class form a global namespace, so slot names
should be chosen with that consideration.

A simplified definition of the CONFIG class is as follows -

(defclass CONFIG
(is-a USER)
(role concrete)
(pattern-match reactive)

; The list of checks to be performed. One to one mapping
; with connector extensions of the same name.
(multislot clck-checks (type SYMBOL)

(default (create$ all_to_all cpu dgemm environment
...))

; The checking mode. Compliance checks compliance to the
; Intel(R) Cluster Ready architecture specification. Health
; checks the functionality of the cluster. Certification
; is essentially the union of compliance and health.
(slot clck-mode (type SYMBOL)

(allowed-values certification compliance health)
(default health))

; The maximum allowable age of a data point, in seconds,
; before a data point is considered "too old". The
; default is 1 week.
(slot data-age-threshold (type NUMBER) (default 604800))

...

To use the CONFIG class, a corresponding rule would add a single
condition to the left hand side:

(defrule duck-data-is-too-old
"Identify instances where the most recent DUCK data should be
considered too old."
; IF the mode is health and the 'duck' check is enabled
(object (is-a CONFIG) (name [config]) (clck-mode health)

(clck-checks $? duck $?)
(data-age-threshold ?age-threshold))

...

The values of the CONFIG slots should always have defaults, and are
configurable via the XML file used to configure Intel® Cluster Checker
(located in /opt/intel/clck/3.1.2/etc/clck.xml by default).

Knowledge Base 23

The following construct can be used to set values for single slot
variables.

<configuration>
<config>

<clck-mode>compliance</clck-mode>
</config>

</configuration>

The following construct can be used to set values for multislot variables.

<configuration>
<config>

<clck-checks>
<entry>PATTERN1</entry>
<entry>PATTERN2</entry>

</clck-checks>
</config>

</configuration>

4.5 Example

This section steps through the complete DUCK knowledge base example.
The source files are included with Intel® Cluster Checker and are located
at /opt/intel/clck/3.1.2/samples/kb.

4.5.1 Class Definition

Recall that the duck command rates nodes on a scale from 1 to 5
“quacks”, or if there is an error during the evaluation, “honks” instead
of “quacks”. So the key data elements that need to be included in the
knowledge base are a node identifier, the sound (“quack” or “honk”),
and the number of times the sound is repeated. The following is an
example CLIPS class definition that includes all of these elements. In
an actual distribution, it would be added to the knowledge base as
/opt/intel/clck/3.1.2/kb/classes/duck.clp.

(defclass DUCK
"This class corresponds to the 'duck' node rating tool."
(is-a BASE_NODE BASE_TIMESTAMP DATABASE MULTISET)
(role concrete)
(pattern-match reactive)

(slot count (type INTEGER) (default 1))
(slot sound (type SYMBOL) (allowed-values honk quack)

(default honk)))

The node_id slot is inherited from the BASE_NODE class, the row-id
slot is inherited from the DATABASE class, and the timestamp slot is
inherited from the BASE_TIMESTAMP class. The MULTISET inheritance will
be described with the uniformity rule.

With the class defined, the connector can now create instances based
on the content of the database (see Chapter 5). Rules can now be
defined to check the output.

24 Knowledge Base

4.5.2 Rules

4.5.2.1 Rule 1: Missing good output

In this example, the first rule creates a sign whenever the number of
quacks is less than 3. In an actual distribution, the rule would be added
to knowledge base as /opt/intel/clck/3.1.2/kb/rules/duck.clp.

(defrule duck-less-than-three-quacks
"Create a sign whenever the number of 'quacks' is less than
3."
; IF the mode is health and the 'duck' check is enabled
(object (is-a CONFIG) (name [config]) (clck-mode health)

(clck-checks $? duck $?))
; AND a node instance with the role 'compute' or 'enhanced'
; exists
(object (is-a NODE) (node_id ?n)

(role $?role&:(member$ compute ?role)
|:(member$ enhanced ?role)))

; AND an instance of the DUCK class exists for a node with
; the same node_id and with the sound 'quack'
?o <- (object (is-a DUCK) (count ?c) (node_id ?n)

(sound quack))
; AND the number of quacks is less than 3
(test (< ?c 3))
=>
; THEN create a sign
(make-instance of COUNTER_SIGN (node_id ?n)

(confidence 90) (severity 50)
(source ?o) (state observed) (value ?c)
(id "duck-less-than-three-quacks")
(args (create$?c))))

The LHS of this rule steps through a series of conditions.

1. An instance of the CONFIG class with the name [config]must exist
with the clck-mode slot set to health and the clck-checks slot
containing duck. In other words, only fire this rule if the “duck”
check is enabled and the checking mode is “health”.

2. A NODE object must exist where the role slot contains either
“compute” or “enhanced”. In other words, only fire this rule for
compute / enhanced nodes. As a side effect, the ?n variable is
populated with the id of the node.

3. A DUCK object must exist where the sound is “quack” and the
node_id slot is same as the ?n value found in the prior condition.
In other words, only fire this rule for nodes with both a NODE object
and a DUCK object. As a side effect, set the ?c variable is populated
with the number of “quacks”.

4. The number of quacks, ?c, must be less than 3.

Only if all four of these conditions are met will the rule fire and execute
the action on the right hand side. The rule is automatically evaluated by
the inference engine for all possible combinations of objects, i.e., each
node is checked by this single rule.

Knowledge Base 25

The confidence and severity levels are arbitrary and a more sophis-
ticated rule might scale them depending on the number of “quacks”,
e.g., 1 “quack” might have a severity level of 75 while 2 “quacks” has a
severity level of 50. See Tables 4.1 and 4.2 for guidance on setting the
confidence and severity levels.

A message catalog entry with the key “duck-less-than-three-quacks”
would be added to /opt/intel/clck/3.1.2/kb/data/msg_en.xmc in an
actual distribution. An example message catalog entry is provided in
/opt/intel/clck/3.1.2/samples/kb/data/msg_en.xmc.

4.5.2.2 Rule 2: Error case

A second rule should be added for the case where the duck honks,
indicating a serious error. The overall construction of the rule is similar
to the previous rule.

(defrule duck-honking
"If the duck honks like a goose, something serious has
happened."

; IF the mode is health and the 'duck' check is enabled
(object (is-a CONFIG) (name [config]) (clck-mode health)

(clck-checks $? duck $?))
; AND a node instance with the role 'compute' or 'enhanced'
; exists
(object (is-a NODE) (node_id ?n)

(role $?role&:(member$ compute ?role)
|:(member$ enhanced ?role)))

; AND an instance of the DUCK class exists for a node with
; the same node_id and with the sound 'honk'
?o <- (object (is-a DUCK) (node_id ?n) (sound honk))
=>
; THEN create a sign
(make-instance of BOOLEAN_SIGN (node_id ?n)

(confidence 100) (severity 100)
(source ?o) (state observed) (value TRUE)
(id "duck-honking")))

As above, a message catalog entry with the key “duck-honking” should
be added.

4.5.2.3 Rule 3: Uniformity

Finally, a rule might be added to verify that all nodes have the same
“quack” rating. Intel® Cluster Checker 2.x transition

note: A “reference” node was arbitrary
picked and every other node was
compared to it. This approach suffers
from the problem of selecting a suitable
“reference” node. For example, if 99
out of 100 nodes are the same, and
the one different node is used for the
reference, then assuming the 99 are
actually correct, many false positives
are reported.

Usually the question of uniformity can be sufficiently answered by
determining what fraction of nodes have the same / different value as
a particular node. This approach avoids the combinatorial explosion
of comparing every node to every other node and also avoids the
problems associated with choosing a “reference” node. The MULTISET
class is provided for determining uniformity. A multiset is similar to a set
except it is a key / value pair where the value is the number of elements
with the same key, e.g., the set {a, a, a, b} corresponds to the multiset
{a:3, b:1}.

26 Knowledge Base

The DUCK class inherits from the MULTISET class. The initmessage-
handler, roughly analogous to a C++ constructor, must be added to
automatically insert the key / value pair into the multiset when each
DUCK instance is created:

(defmessage-handler DUCK init after ()
"Add MULTISET key / value pairs. Skip non-quacks."
(if (eq ?self:sound quack) then
(send ?self add (send ?self multiset-key) ?self:count)))

(defmessage-handler DUCK multiset-key ()
"Generate a distinct key for each node architecture, role,
and subcluster combination."
; defaults
(bind ?architecture x86_64)
(bind ?role compute)
(bind ?subcluster default)

(bind ?ins (find-instance ((?n NODE)) (eq ?n:node_id
?self:node_id)))

(if (= (length ?ins) 1) then
(bind ?i (nth$ 1 ?ins))
(bind ?architecture (send ?i get-architecture))
(bind ?subcluster (send ?i get-subcluster))
(if (member$ compute (send ?i get-role)) then

(bind ?role compute)
else (if (member$ enhanced (send ?i get-role)) then

(bind ?role enhanced))))

(bind ?key (sym-cat (class ?self) + ?subcluster + ?role
+ ?architecture))

(return ?key))

The multiset-keymessage handler creates distinct keys for each
subcluster, node architecture, and node role. This is done to avoid
comparing fundamentally different nodes, e.g., do not compare
compute nodes to storage nodes.

The uniformity rule is:

(defrule duck-quack-count-is-not-consistent
"Create a sign whenever the number of 'quacks' is not
consistent."
; IF the mode is health and the 'duck' check is enabled
(object (is-a CONFIG) (name [config]) (clck-mode health)

(clck-checks $? duck $?))
; AND a node instance with the role 'compute' or 'enhanced'
; exists
(object (is-a NODE) (node_id ?n)

(role $?role&:(member$ compute ?role)
|:(member$ enhanced ?role)))

; AND an instance of the DUCK class exists for a node with
; the same node_id and with the sound 'quack'
?o <- (object (is-a DUCK) (node_id ?n) (count ?c)

(multiset_control TRUE) (sound quack))
; AND the fraction of nodes with the same quack count is
; less than 0.9
(test (< (send ?o fraction (send ?o multiset-key) ?c) 0.9))
=>

Knowledge Base 27

(bind ?key (send ?o multiset-key))
(bind ?fraction (- 1 (send ?o fraction ?key ?c)))
(make-instance of BOOLEAN_SIGN (node_id ?n)

(confidence (* 100 ?fraction)) (severity 80)
(state observed) (source ?o) (value TRUE)
(id "duck-quack-count-is-not-consistent")
(args (create$ (* 100

(send ?o fraction ?key ?c))
?c))))

The (multiset_control TRUE) condition appears in this rule to
guarantee that all values have been added to the multiset before
attempting to activate the rule. It should be used in all rules that rely on
a multiset value.

The final LHS condition decides that if at least 90% of nodes have the
same value, then it is actually correct. This is an arbitrary threshold to
try to minimize the number of false positives that get reported.

The RHS creates a temporary variable ?fraction that corresponds to
the fraction of nodes that have a different number of “quacks”. The
confidence level scales with the fraction, i.e., the more nodes with a
different value, the more likely that the outlier is actually an outlier.

4.5.2.4 Rule 4: Diagnosis

The duck diagnostic tool does not lend itself to diagnosis. The “quack”
rating scale is unambiguous, but is a closely held trade secret by
Waterfowl Industries and additional information such as why a node
rated 2 “quacks” instead of 3 or the duck honked is not provided.

Diagnoses are typically made by combining one or more signs. For
example, consider the combination of the proverbial “black swan” sign For a digression on black swans, see

https://en.wikipedia.org/wiki/
Black_swan_theory.

and the “duck-honking” sign to produce the diagnosis that the duck is
honking because it is actually a black swan:

(defrule duck-duck-swan
"Diagnose the root cause of the honking duck."
; IF the mode is health and the 'duck' check is enabled
(object (is-a CONFIG) (name [config]) (clck-mode health)

(clck-checks $? duck $?))
; AND a node instance with the role 'compute' or 'enhanced'
; exists
(object (is-a NODE) (node_id ?n)

(role $?role&:(member$ compute ?role)
|:(member$ enhanced ?role)))

; AND a “”duck-honking sign exists for a node with the
; same node_id
?s1 <- (object (is-a SIGN) (node_id ?n) (id "duck-honking"))
; AND a "black-swan" sign exists for a node with the same
; node_id
?s2 <- (object (is-a SIGN) (node_id ?n) (id "black-swan"))
=>
; THEN create a DIAGNOSIS and mark the signs as diagnosed
(send ?s1 put-state diagnosed)
(send ?s2 put-state diagnosed)
(make-instance of DIAGNOSIS (node_id ?n)

https://en.wikipedia.org/wiki/Black_swan_theory
https://en.wikipedia.org/wiki/Black_swan_theory

28 Knowledge Base

(confidence 20) (severity 100)
(source (create$ (send ?s1 get-source)

(send ?s2 get-source)))
(id "duck-duck-swan")
(remedy "duck-duck-swan-remedy")))

Note that this rule is not part of the included sample files.

4.6 Developing with CLIPS

4.6.1 Editor

There is a not a specialized CLIPS editor. Any text editor may be used,
although one with a LISP mode is recommended. Both vim and Emacs
have built-in LISP modes.

• Emacs: <M-x> lisp-mode

• vim: :set lisp

Add the following to $HOME/.emacs to automatically open all files with
the .clp extension in lisp-mode:

;;; CLIPS code
(defalias 'clips-mode 'lisp-mode)
(setq auto-mode-alist (cons '("\\.clp$" . clips-mode)

auto-mode-alist))

4.6.2 Style

Coding style, as usual, is largely a matter of personal preference. The
following style guidelines are recommended:

• Do not exceed 80 characters per line

• Generally use alphabetical order for any list of items

• Use all lower case, except for class names

• Uses dashes rather than underscores or CamelCase

• Document all classes, functions, message-handlers, rules, etc.
using the CLIPS comment field rather than ’;’ style comments

• Use the same value for the rule name and sign / diagnosis id slot

4.6.3 Debugging and Profiling

CLIPS includes several techniques to help better understand what it is
doing.

One of the most debugging useful techniques is the “watch” capability
(see section 13.2.3 in the CLIPS Basic Programming Guide).

Knowledge Base 29

CLIPS also includes a good profiling capability (see section 13.16 in the
CLIPS Basic Programming Guide).

Additional debug and/or profile statements may be included in
/opt/intel/clck/3.1.2/kb/clck3.clp, in which case, additional output
will be displayed when running an analysis.

30

Chapter 5

Connector

5.1 Overview

The Intel® Cluster Checker connector is a C++ framework to bridge
the database and the knowledge base. Conceptually, the connector’s
functionality is as follows:

1. Read data from the database.

2. Transform the data, e.g., extract the relevant information from the
raw, unstructured database content via regular expressions.

3. Create CLIPS instances using the transformed data.

Extensions, in the form of shared libraries, plug into the connector
framework, to perform these functions. Typically, there will be one
connector extension per data provider / CLIPS class, but this may not
always be the case.

The interfaces described in this chapter are located in /opt/intel/clck/
3.1.2/include/connector.

5.2 Extensions

Extensions are implemented through the Extension and Transform
classes. Conceptually, the purpose of Transform class is to read in data
from a source, process the data, and then send the data to an output.
The Extension class is specialized to use the Intel® Cluster Checker
SQLite database as the input and create CLIPS instances as the output.

The connector framework performs the following actions on each
extension:

1. Load the extension shared library using dlopen().

2. Call the constructor of the extension.

3. Run the data input method parse().

Connector 31

4. Call the destructor the extension.

5. Unload the shared library using dlclose().

5.2.1 Transform Class Members

Methods:

parse()

Pull data from the input source, i.e., the database, transform it, and
call route().

set_header()

Define the CLIPS slots to be populated. The order should match
the order used in route().

set_name()

Sets the internal name of the extension. This name should
match the name of the shared library and is also used in
/opt/intel/clck/3.1.2/etc/clck.xml to configure the extension
to be loaded.

route()

Send data to the output sink, i.e., create a CLIPS instance. The
order should match the order used in set_header().

Variables:

DbRead db_read

Database reader instance

void* clips_env

Pointer to the CLIPS knowledge base environment

5.3 Database Interface

The db_read base class is a general interface for reading data from
the database. The db_read_sqlite derived class supports the SQLite*
database implementation.

The following method are provided for accessing the database, and are
defined in /opt/intel/clck/3.1.2/include/connector/db_read.h.

bool select(std::string provider_name, NsDb::Rows& rows,
std::string where_clause="");

The database rows resulting from the query are appended to the vector
of rows provided by the caller in the second argument. When this
function is called, an SQL query of the following form is constructed an
executed.

SELECT * FROM clck_1 WHERE provider=<provider_name>
AND <where_clause>

32 Connector

A more general select method is also available.

bool select(const std::string query, NsDb::Rows& rows,
const std::map<std::string, int>& columns);

As before, the database rows resulting from the query are appended
to the vector of rows provided by the caller in the second argument.
The difference is that the first argument may be any valid SQL SELECT
query. Since not all database columns may be returned by the query,
the third argument is a map of column names and their order in the
SELECT query.

For example, the following would select the latest rows for each
node corresponding to the duck provider. Specifically, it would select
the Timestamp, Hostname, STDOUT, and Stdout_size columns (see
Appendix A for the database schema).

db_read.select("SELECT MAX(Timestamp), Hostname, STDOUT,
Stdout_size FROM clck_1 WHERE PROVIDER='duck' GROUP BY
Hostname", rows,

{{"Timestamp", 0}, {"Hostname", 1}, {"STDOUT", 2},
{"Stdout_size", 3}});

A nearly equivalent set of data can be obtained using the following
function.

bool get_latest_rows_provider(std::string provider,
NsDb::Rows& rows);

Unlike the general select() function, get_latest_rows_provider()
populates all of the database columns rather than just the specified
subset.

5.3.1 Output and Encoding

The database stores standard output and standard error as blobs.
When the connector reads these columns from the database, they are
stored as vectors of unsigned chars. This is because it is possible for a
provider to output data in a variety of formats, including binary.

These columns may also be encoded. If the encoding option is set
then the connector will automatically decode the data back to the raw
format.

When writing extensions, be aware that the output of a provider might
not be ASCII text. However, in most cases the output can be treated as a
string.

5.4 Knowledge Base and CLIPS Interface

The connector makes use of the CLIPS C API for interacting with the
knowledge base (http://clipsrules.sourceforge.net/documentation/
v630/apg.pdf).

http://clipsrules.sourceforge.net/documentation/v630/apg.pdf
http://clipsrules.sourceforge.net/documentation/v630/apg.pdf

Connector 33

5.4.1 Creating CLIPS Class Instances

Connector extensions populate the knowledge base by creating CLIPS
instances. The format of the data expected by the knowledge base, i.e.,
the CLIPS slots, is defined by the corresponding knowledge base class.

5.4.2 Parsing database output

Once the data is read from the database it is available for processing.
Any method available to C++ can be used to filter and transform the
data into the format expected by the knowledge base, e.g., regular
expression.

5.4.3 Handling Parse Errors
Tip: An exception should be thrown
only in the most exceptional
circumstances when no recovery is
possible.

Parse errors can occur when a connector extension reads unexpected
or invalid data from the database. If the error is critical to the operation
to the entire front-end system, then it is appropriate to log an error
and throw an exception. In the case of non-critical errors, then the
parser should log a warning message, ignore the offending row in the
database, and continue processing the rest of the rows.

5.5 Building Extensions

Extensions are shared libraries and need to be built as such.

Sample extensions and a Makefile are provided in /opt/intel/clck/3.
1.2/samples/connector.

GCC* 4.9 or later is required to build extensions. The Intel® C++
Compiler 15.0 or later may also be used, but GCC* 4.9 or later is still
required. Tip: Build extensions with the oldest

Linux distribution / glibc version that is
intended to be supported. Otherwise,
the extension may include symbols
that are not be available in older glibc
versions and consequently will not run
on older Linux distributions.

Intel® Cluster Checker uses features from C++11, therefore the
command line option -std=c++11 is required to build connector
extensions.

5.6 Loading Extensions

The list of connector extensions to load are defined by the clck-checks
section of /opt/intel/clck/3.1.2/etc/clck.xml. New extensions
should be added to list of extensions already present.

The basename of the extension should match the internal extension
name assigned by set_name(). This name is the value that should be
added to the list of checks.

34 Connector

5.7 Example

A complete, fully functional connector extension that transforms the
output of the duck provider into instances of DUCK CLIPS class is located
at /opt/intel/clck/3.1.2/samples/connector.

35

Appendix A

Database Schema

The database consists of a single table named clck_1. The table
contains columns described in Table A.1.

Name SQLite Type Description

rowid INTEGER Unique row ID
row_timestamp INTEGER Timestamp when the row was

inserted (seconds since the UNIX
epoch)

Provider TEXT Data provider name
Hostname TEXT Hostname of the node where the

data provider ran
num_nodes INTEGER Number of nodes used by the data

provider
node_names TEXT Comma separated list of nodes

used by the data provider. Empty if
num_nodes = 1.

Exit_status INTEGER Exit status of the data provider
Timestamp INTEGER Timestamp when the data provider

started (seconds since the UNIX
epoch)

Duration REAL Data provider walltime (seconds)
Encoding INTEGER Encoding format of the STDOUT

and STDERR columns. 0 = no
encoding, 1 = base64 encoding.

Stdout_size INTEGER Standard output size (number of
bytes)

STDOUT BLOB Data provider standard output
Stderr_size INTEGER Standard error size (number of

bytes)
STDERR BLOB Data provider standard error
OptionID TEXT The ID of the option set with which

the provider was run
Version INTEGER Output format version of the data

provider

Table A.1 – Database schema.

The data definition language definition of the database is:

CREATE TABLE clck_1 (
rowid INTEGER PRIMARY KEY,
row_timestamp INTEGER DEFAULT (strftime('%s', 'now')),
Provider TEXT,

36 Database Schema

Hostname TEXT,
num_nodes INTEGER,
node_names TEXT,
Exit_status INTEGER,
Timestamp INTEGER,
Duration REAL,
Encoding INTEGER,
Stdout_size INTEGER,
STDOUT BLOB,
Stderr_size INTEGER,
STDERR BLOB,
OptionID TEXT,
Version INTEGER

);

The Intel® Cluster Checker database is a standard SQLite* database
and any SQLite* compatible tool may be used to browse the database
contents. In addition, the clckdb utility is provided with Intel® Cluster
Checker (see clckdb -h for more information).

	Introduction
	End-to-end Extension Example
	Extending Intel® Cluster Checker

	Embedding Intel® Cluster Checker
	Data Providers
	Introduction
	Running a data provider
	Configuration
	Preset Environment Variables

	Definition
	Example
	Basic Data Provider
	Configurable Command

	Knowledge Base
	Background
	Brief Overview of Expert Systems
	CLIPS

	Overview of the Intel® Cluster Checker Knowledge Base
	Key Concepts
	Signs
	Diagnoses
	Remedies

	Basic Implementation
	Classes
	Rules
	Signs

	Organization and Directory Structure

	Automatically Created Objects
	Configurability
	Example
	Class Definition
	Rules
	Rule 1: Missing good output
	Rule 2: Error case
	Rule 3: Uniformity
	Rule 4: Diagnosis

	Developing with CLIPS
	Editor
	Style
	Debugging and Profiling

	Connector
	Overview
	Extensions
	Transform Class Members

	Database Interface
	Output and Encoding

	Knowledge Base and CLIPS Interface
	Creating CLIPS Class Instances
	Parsing database output
	Handling Parse Errors

	Building Extensions
	Loading Extensions
	Example

	Database Schema

