

Tutorial: Analyzing MPI Applications
Intel® Trace Analyzer and Collector

Intel® VTune™ Amplifier XE

2

Contents
Legal Information ... 3

1. Overview .. 4
1.1. Prerequisites ... 5

1.1.1. Required Software ... 5
1.1.2. Setting Up the Environment Variables ... 5
1.1.3. Creating Trace Files ... 5

1.2. Starting Intel® Trace Analyzer ... 6
1.3. Starting Intel® VTune™ Amplifier XE ... 7

2. Analyzing an MPI Application ... 9
2.1. Optimizing MPI Communications .. 9

2.1.1. Prepare for Analysis ... 10
2.1.2. Ungroup MPI Functions .. 11
2.1.3. Detect Serialization in Function Profile and Message Profile .. 12
2.1.4. Compare Original Trace File With Idealized Trace File ... 13
2.1.5. Remove Serialization ... 15
2.1.6. Compare Two Trace Files .. 16
2.1.7. Analyze Optimized Communications ... 17

2.2. Improving Intra-process Performance ... 18
2.2.1. Run Basic Hotspots Analysis .. 18
2.2.2. Interpret Results .. 19

3. Summary ..22

4. Key Terms ..23

Legal Information

3

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to obtain
the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Intel® Trace Analyzer ships libraries licensed under the GNU Lesser Public License (LGPL) or Runtime
General Public License. Their source code can be downloaded from
ftp://ftp.ikn.intel.com/pub/opensource.

4

1. Overview

 Intel® Trace Analyzer and Collector enables you to understand MPI application behavior and quickly
find bottlenecks to achieve high performance for parallel cluster applications. Use the Intel Trace Analyzer
and Collector to evaluate profiling statistics and load balancing, identify communication hotspots, and
increase application efficiency.

 Intel® VTune™ Amplifier XE enables you to find serial and parallel code bottlenecks and speed
execution. Use this tool to analyze the algorithm choices, understand where and how your application can
benefit from available hardware resources, and identify code sections that may cause unnecessary power
consumption.

Both products are installed as part of Intel® Parallel Studio XE Cluster Edition.

To improve performance of some complex applications, it is necessary to analyze their cross-process
behavior as well as their single process performance. Intel Trace Analyzer and Collector enables you to
analyze communications between processes, while Intel VTune Amplifier helps you find single process
performance issues.

About This Tutorial This tutorial demonstrates a workflow applied to a sample program. The source code
is available at <install-dir>/examples/poisson, where <install-dir> is the
Intel Trace Analyzer and Collector installation directory.

You can ultimately apply the same workflow to your own applications:

• Find communication imbalance issues in your application using the Intel® Trace
Analyzer charts

• Find hotspots on the intra-process level of your application using Intel® VTune™
Amplifier XE

• Review the application

Estimated Duration 20-25 minutes

Learning
Objectives

After you complete this tutorial, you should be able to:

• Conduct a complex application analysis using Intel Trace Analyzer and Collector
and Intel VTune Amplifier XE

• Improve overall performance

More Resources Learn more about the Intel Trace Analyzer and Collector and Intel VTune Amplifier in
the guides and tutorials:

• Intel® Trace Analyzer User and Reference Guide

• Intel® Trace Collector User and Reference Guide

• Finding Hotspots tutorial at the

• Intel® Trace Analyzer User and Reference Guide

• Intel® Trace Collector User and Reference Guide

• Intel® VTune™ Amplifier XE User's Guide

• Tutorial: Finding Hotspots

The guides and tutorials are available at:

• Intel® Trace Analyzer and Collector Product Page

https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-trace-analyzer

Overview

5

• Intel® VTune™ Amplifier XE Product Page

• Intel® Software Documentation Library

Submit Feedback You can submit your feedback on the documentation at
http://www.intel.com/software/products/softwaredocs_feedback/.

1.1. Prerequisites
This section describes the steps you need to do before you start using the Intel® Trace Analyzer and
Collector and Intel® VTune™ Amplifier XE.

1.1.1. Required Software
To perform all the steps described in this tutorial, you will need the following software installed on your
system:

• Intel® compilers

• Intel® MPI Library

• Intel® Trace Analyzer and Collector

• Intel® VTune™ Amplifier XE

All of these products are installed as part of Intel® Parallel Studio XE Cluster Edition.

1.1.2. Setting Up the Environment Variables
Linux* OS:

Set the required environment variables by sourcing the psxevars.c[sh] script available at <install-
dir>/parallel_studio_xe_<version>.x.xxx/bin, where <install-dir> is the Intel® Parallel
Studio XE Cluster Edition installation directory. For example:
$ source psxevars.sh

Windows* OS:

Open the command prompt from Start > Intel Parallel Studio XE version > Compiler and Performance
Libraries > Intel 64 Visual Studio version environment. This will set all required environment variables
and you will be ready to trace your applications.

1.1.3. Creating Trace Files
To trace the poisson application, go to <install-dir>/examples/poisson and copy its contents into
your working directory, then trace the application:

Linux* OS:

1. Compile the application running the make command. Adjust the Makefile, if necessary.

2. Run the application with the -trace option of mpirun:

$ mpirun -n 4 -trace ./poisson

Windows* OS:

1. Compile all components of the poisson application from the compiler command prompt with the
-trace option. Use the -Zi option to compile the application in debug mode. The basic
command line for Fortran programs is:

> mpiifort -trace -Zi myApp.f90

2. Run the application to generate a tracefile:

> mpiexec -n 4 myApp.exe

https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-software-technical-documentation
http://www.intel.com/software/products/softwaredocs_feedback/
https://software.intel.com/en-us/intel-parallel-studio-xe

Analyzing MPI Applications

6

For your convenience, this tutorial comes with a set of trace files available at <install-
dir>/examples/traces.

OS X*:

On OS X* Intel® Trace Collector is unavailable, therefore you cannot trace applications on this OS. Generate
a tracefile on a Linux* or Windows* machine, or use the generated tracefiles from <install-
dir>/examples/traces.

Once you have the trace data available for the poisson application, you are ready to start the analysis.

1.2. Starting Intel® Trace Analyzer
Invoke the Intel® Trace Analyzer GUI.

On Linux* OS and OS X*, enter the command:
$ traceanalyzer

On Windows* OS, navigate to an .stf file and double-click to open it in the Intel Trace Analyzer.

Intel® Trace Analyzer GUI

Use the Charts menu to open and navigate the various Intel Trace Analyzer charts within the
current tracefile and use them to analyze the application trace data.

Use the Toolbar buttons to control the display of the currently open trace file.

The Trace Map displays the MPI function activity for the application over time. MPI function
activity is displayed in red.

Drag your mouse on a section in the Trace Map to zoom into the relevant subsets of tracefile

Overview

7

charts. This map appears for all the charts.

The currently open chart is the Event Timeline. This chart displays individual process activities
over time. Horizontal bars represent the processes with the functions called in these processes.
The bars consist of colored rectangles labeled with the function names. Black lines indicate
messages sent between processes. These lines connect sending and receiving processes. Blue
lines represent collective operations, such as broadcast or reduce operations.

To change the displayed chart, go to Charts.

The Status Bar displays the exact time point and function type when you hover the mouse over
the processes shown in the Event Timeline.

1.3. Starting Intel® VTune™ Amplifier XE
Invoke the Intel® VTune™ Amplifier XE GUI and continue the analysis of the poisson application.

On Linux* OS and OS X*, run the command:
$ amplxe-gui

On Windows* OS:

• From the Windows* Start menu, choose All Programs > Intel® Parallel Studio XE version >
Analyzers > Intel VTune Amplifier XE version.

• On Windows 8, find the Intel VTune Amplifier XE shortcut on the Start screen.

Intel® VTune™ Amplifier XE GUI

The Project Navigator shows projects and analysis results in hierarchy view. Click the Project

Navigator button on the toolbar to enable/disable the Project Navigator.

Analyzing MPI Applications

8

The viewpoint header indicates the preset configuration of windows/panes for an analysis
result. Click the (change) link to change the viewpoint. For each analysis type, you can switch
among several viewpoints to focus on particular performance metrics. Click the question mark

icon to read the viewpoint description.

Switch between window tabs to explore the analysis type configuration options and collected
data provided by the selected viewpoint.

Use the Grouping drop-down menu to choose a granularity level for grouping data in the grid.

Use the filter toolbar to filter out the result data according to the selected categories.

9

2. Analyzing an MPI Application
Use Intel® Trace Analyzer to conduct a performance analysis and tune MPI communications between
processes. Then switch to the Intel® VTune™ Amplifier XE to carry out a new round of analysis and identify
hotspots on specific processes.

This tutorial uses the poisson sample code as well as the sample trace files
poisson_sendrecv.single.stf and poisson_icomm.single.stf to demonstrate the
interoperability of the Intel Trace Analyzer and Intel VTune Amplifier XE that enables you to analyze and
further tune the application.

Step 1: Optimize MPI
communications

• Detect serialization in Function Profile and Message Profile.

• Find imbalance on the inter-process level by comparing the
original application with the idealized one.

• Remove serialization.

Step 2: Improve intra-process
performance

• Identify hotspots on the intra-process level.

• Interpret the collected data to find MPI processes in the
workload and find possible ways to resolve the issue.

2.1. Optimizing MPI Communications

 Use the Intel® Trace Analyzer to analyze an MPI application's behavior to improve performance at the
inter-process level.

Analyzing MPI Applications

10

This part of the tutorial uses the sample trace files poisson_sendrecv.single.stf and
poisson_icomm.single.stf to demonstrate how to detect and remove serialization in your
application.

Step 1: Prepare for
analysis

Use the Intel Trace Analyzer Event Timeline chart to zoom in to a single
iteration of your application.

Step 2: Detect
serialization

• Ungroup MPI functions to analyze MPI process activity in your application.

• Analyze your application with the Function Profile and Message Profile
charts.

• Compare the original tracefile with the idealized trace to identify
problematic interactions.

Step 3: Remove
serialization

Improve your application performance by replacing the problem-causing
function.

Step 4: Check the result Use the Intel Trace Analyzer Comparison chart to compare the serialized
application with the revised one.

Step 5: Analyze optimized
communications

Analyze the revised application in the Event Timeline to see if the revised
code needs further optimization.

Key Terms
Idealized Tracefile
Serialization

2.1.1. Prepare for Analysis

 To analyze the application, start with the following steps:

1. Open the poisson_sendrecv.single.stf sample trace file.

2. Go to Charts > Event Timeline to open the Event Timeline.

NOTE
When you open a new trace file, Function Profile and Performance Assistant charts open by
default. You can change the default chart in the Preferences dialog box (Options > Preferences >
Tracefile preferences).

3. In the Event Timeline, click and drag your mouse over a specific time interval to zoom into it.

4. You should start noticing the iterative nature of the application. Zoom deeper into the trace by

selecting a single iteration.

Analyzing an MPI Application

11

This is the view of the zoom. The Trace Map shows the section within the trace that is displayed.
The Event Timeline chart shows the events that were active during the selected time.

2.1.2. Ungroup MPI Functions

 Analyze MPI process activity in your application.

To see the particular MPI functions called in the application, right-click on MPI (marked with a red
rectangle) in the Event Timeline and select Ungroup Group MPI. This operation exposes the individual MPI
calls.

After ungrouping the MPI functions, you see that the processes communicate with their direct neighbors
using MPI_Sendrecv at the start of the iteration.

Analyzing MPI Applications

12

This data exchange has a disadvantage: process i does not exchange data with its neighbor i+1 until the
exchange between i-1 and i is complete. This delay appears as a staircase pattern resulting with the
processes waiting for each other.

The MPI_Allreduce at the end of the iteration resynchronizes all processes; that is why this block has the
reverse staircase appearance.

2.1.3. Detect Serialization in Function Profile and Message
Profile

 Continue the analysis of your application with information provided by other charts.

In the Function Profile chart, open the Load Balance tab.

Go to the Charts menu to open a Message Profile.

Analyzing an MPI Application

13

In the Load Balance tab, expand MPI_Sendrecv and MPI_Allreduce. The Load Balancing indicates that
the time spent in MPI_Sendrecv increases with the process number, while the time for MPI_Allreduce
decreases.

Examine the Message Profile Chart down to the lower right corner. The color coding of the blocks indicates
that messages travelling from a higher rank to a lower rank need proportionally more time while the
messages travelling from a lower rank to a higher rank reveal a weak even-odd kind of pattern.

Key Terms
Serialization

2.1.4. Compare Original Trace File With Idealized Trace File

 See your application under the ideal circumstances and compare the original trace file with the
idealized one to isolate problematic interactions.

Create the idealized trace:

1. In the poisson_sendrecv.single.stf view, select Advanced > Idealization, or use the
toolbar button.

2. In the Idealization dialog box, check the idealization parameters. By default, Intel® Trace Analyzer
stores the idealized trace in the local folder where the original trace file was opened. The default
name of the new ideal trace file is the input trace file name with the suffix ideal added before the
.stf extension.

3. Click Start to idealize the trace poisson_sendrecv.single.stf.

Analyzing MPI Applications

14

To get more information on idealization, refer to the Idealization Dialog Box section of the Intel® Trace
Analyzer User and Reference Guide.

Compare the original trace file with the idealized trace:

1. In the poisson_sendrecv.single.stf view, select Advanced > Imbalance Diagram or press
the toolbar button.

2. In the Imbalance Diagram dialog box, press the Open Another File button, navigate to the
idealized trace poisson_sendrecv.ideal.stf and select it.

3. Click OK.

4. In the Imbalance Diagram window, click the Total Mode button and select Breakdown Mode.

Analyzing an MPI Application

15

This chart shows you a breakdown of the interconnect vs. imbalance overhead in your application, as well
as which MPI routines are at fault. You can see that MPI_Sendrecv is the most time-consuming function.
The imbalance weight is displayed in the light purple color and comprises about 10% for the
MPI_Sendrecv function. This is the time the processes spend waiting for each other.

Key Terms
Idealized trace file

2.1.5. Remove Serialization

 You can improve the performance of the poisson sample program by replacing the blocking
 MPI_Sendrecv with non-blocking communications via MPI_Isend. The modified source file
pardat.f90_icomm is available in the source folder. The trace file of the modified program is also
available: <install-dir>/examples/traces/poisson_icomm.single.stf.

Once corrected, the single iteration of the revised program will look similar to this:

Analyzing MPI Applications

16

Since poisson_sendrecv.single.stf is a striking example of serialization, almost all of the Intel®
Trace Analyzer charts show this interesting pattern. But in the real-world cases, it may be necessary to
formulate a hypothesis regarding how the program should behave and to check this hypothesis using the
most suitable chart.

Key Terms
Serialization

2.1.6. Compare Two Trace Files

 Compare two trace files with the help of the Comparison View. To open a Comparison View for the
original application trace file (poisson_sendrecv.single.stf), go to View > Compare. In the dialog
that appears, choose the trace file of the revised application (poisson_icomm.single.stf). The
Comparison View shows an Event Timeline for each trace file and a Comparison Function Profile chart.

Zoom into the first iteration in each trace file. The Comparison View looks similar to:

Analyzing an MPI Application

17

In the Comparison View, you can see that using non-blocking communication helps to remove serialization
and decrease the time of communication of processes.

Key Terms
Serialization

2.1.7. Analyze Optimized Communications

 Investigate other instances of time-consuming MPI calls in the revised application. To do this:

1. Open the Summary Page for the poisson_icomm.single.stf to see the MPI- and CPU-time
ratio and get information about the most time-consuming MPI functions. To open the Summary
Page, click the toolbar button.

You can see that it is the MPI_Recv function that consumes 5.47% of the MPI time. To take a
closer look at the function, click Continue here and go to the Event Timeline.

2. Open the Event Timeline, zoom into the first bunch of MPI communications and ungroup grouped
MPI calls.

3. Zoom deeper to see the MPI_Recv calls closer:

Analyzing MPI Applications

18

You can see that the processes starting from P1 have already called MPI_Recv, but are waiting for
P0 to send data. This kind of communication generates imbalance which is later reduced by
MPI_Allreduce resynchronizing all the MPI_Recv calls.

4. To prove that it is exactly the MPI_Recv call that causes imbalance, analyze the application with
Intel® VTune™ Amplifier XE.

Key Terms
Serialization

2.2. Improving Intra-process Performance

 Use the Intel® VTune™ Amplifier to analyze an MPI application behavior to improve the application
performance on the intra-process level.

This part of the tutorial uses the poisson sample code to demonstrate how to detect and remove
hotspots in your application.

Step 1: Prepare for and
run Basic Hotspots
analysis

Run the Basic Hotspots analysis to identify the functions that took a relatively
long time to execute.

Step 2: Identify hotspots
and interpret results

Explore the application-level performance, analyze the most time-consuming
functions, and identify the hotspot code region.

2.2.1. Run Basic Hotspots Analysis

 Open the Summary Page in Intel® Trace Analyzer and copy the command line for Intel® VTune™
Amplifier XE:

Analyzing an MPI Application

19

NOTE
This information is available only for tracefiles generated on Linux* OS. On Windows* OS, make up the
command line manually, see the example below.

Run the command line to perform the hotspot analysis with Intel VTune Amplifier.

Linux OS:
& mpirun -gtool "amplxe-cl -collect hotspots -r result:1" -n 16 ./poisson inp

Windows OS:
> mpiexec -gtool "amplxe-cl -collect hotspots -r result:1" -n 16 ./poisson inp

Navigate to the result.1 directory and open the poisson.1.amplxe file in Intel VTune Amplifier.

Key Terms
Hotspot

2.2.2. Interpret Results

 Explore the application-level performance:

1. Intel® VTune™ Amplifier XE opens with the Summary page. Use this page as a starting point for the
analysis of your application. In the Elapsed Time section of the Summary page, find out the
elapsed time. For the current application it is 0.463 seconds:

This display also indicates that this is a single-threaded application with the CPU time equal to
0.080 seconds.

2. In the Top Hotspot section, see the most time-consuming functions. For the poisson application,
they are poisson_red_black_ and mpi_recv.

3. To analyze the most time-consuming functions, click the Bottom Up tab. Take a look at the CPU

Time column, in which you can see that it took 70.010 milliseconds to execute the most time
consuming function of the application and 9.990 milliseconds to execute MPI_Recv.

Analyzing MPI Applications

20

NOTE
To see MPI functions under the Bottom-Up tab, make sure that Call Stack Mode at the bottom of
the tab is set to User Functions + 1

It proves that the result we saw in the Intel® Trace Analyzer Event Timeline is correct: this is the
MPI_Recv call that generates imbalance in the application. Since there is no need to optimize this
kind of logical imbalance, proceed with the analysis.

4. To see the imbalance created by the other function, filter the MPI_Recv out of the analysis scope.
To do this, right-click the function at the Bottom-Up tab and select Filter Out By Selection, as
shown in the example:

5. Take a look at the function with poor CPU usage. Double-click the poisson_red_black_

function to open the source and identify the hotspot code regions. The beginning of the hotspot
function is highlighted. The source code in the Source pane is not editable.

NOTE
To enable the Source pane, make sure to build the target with debugging symbols using the -g
(Linux* OS) and /Zi (Windows* OS) compiler flags.

Analyzing an MPI Application

21

6. For the poisson application, you can see the cycle in which computation took most of the CPU
time.

Two options for resolving the issue are vectorize, or parallelize the cycle.

For more detailed explanations and more methods for analysis of your application, see the Intel® Software
Documentation Library or Intel® VTune™ Amplifier XE product page and refer to the Finding Hotspots
tutorials.

Key Terms
CPU time
Elapsed time
Hotspot
Target

http://software.intel.com/en-us/intel-software-technical-documentation?field_software_product_tid%5b%5d=20841&field_operating_system_tid%5b%5d=20841
http://software.intel.com/en-us/intel-software-technical-documentation?field_software_product_tid%5b%5d=20841&field_operating_system_tid%5b%5d=20841
https://software.intel.com/en-us/intel-vtune-amplifier-xe

22

3. Summary
You have completed the Analyzing Application with Intel® Trace Analyzer and Collector and Intel® VTune™
Amplifier tutorial. The following is the summary of important things to remember when using these tools
to analyze and tune your application.

Step Tutorial Recap Key Tutorial Take-aways

1. Optimize MPI
communications

• Prepared for the application analysis.

• Used the Event Timeline, Function
Profile, Message Profile and Imbalance
Diagram to detect serialization that
slows down the application.

• Removed serialization by replacing the
problem-causing function.

• Compared the original trace file with
the trace file of the revised application.

• Analyzed the improved
communications in the Event Timeline.

• Ungroup MPI functions to identify
which functions slow down the
application.

• Use the Function Profile and Message
Profile charts to see how much time is
spent in MPI.

• Generate the idealized trace and
compare it with the original trace to
get an insight on your application
under the ideal circumstances and
isolate problematic interactions.

• In the real-world cases, it may be
necessary to formulate a hypothesis
regarding how the program should
behave and to check this hypothesis
using the most suitable chart.

2. Improve intra-
process
performance

• Built the target and launched the Basic
Hotspots data collection using the
interoperability features of the tools.

• Analyzed function calls and CPU time
spent in each program unit of your
application and identified the function
that took the most CPU time.

• Found possible way to resolve the
issue and optimize the source code.

• Start analyzing the performance of
your application from the Summary
window to explore the performance
metrics for the whole application.

• Then, move to the Bottom-up window
to analyze the performance per
function. Focus on the hotspots -
functions that took the most CPU time.
By default, they are located at the top
of the table.

• Double-click the hotspot function in
the Bottom-up pane or Call Stack
pane to open its source code.

Next step: Use the Intel® Trace Analyzer and Collector and Intel® VTune™ Amplifier to analyze your own
application.

23

4. Key Terms
The following terms are used throughout this tutorial:

CPU time: The amount of time a thread spends executing on a logical processor. For multiple threads, the
CPU time of the threads is summed. The application CPU time is the sum of the CPU time of all the threads
that run the application.

Elapsed time: The total time your target ran, calculated as follows: Wall clock time at end of application -
Wall clock time at start of application.

hotspot: A section of code that took a long time to execute. Some hotspots may indicate bottlenecks and
can be removed, while other hotspots inevitably take a long time to execute due to their nature.

idealized trace file: A trace file of the application under ideal circumstances - infinite bandwidth and zero
latency.

serialization: An effect in which a parallel program is reduced to serial execution due to blocking effects
between execution units.

target: An executable file you analyze using the Intel® VTune™ Amplifier.

	Tutorial: Analyzing MPI Applications

	Legal Information
	1. Overview
	1.1. Prerequisites
	1.1.1. Required Software
	1.1.2. Setting Up the Environment Variables
	1.1.3. Creating Trace Files

	1.2. Starting Intel® Trace Analyzer
	1.3. Starting Intel® VTune™ Amplifier XE

	2. Analyzing an MPI Application
	2.1. Optimizing MPI Communications
	2.1.1. Prepare for Analysis
	2.1.2. Ungroup MPI Functions
	2.1.3. Detect Serialization in Function Profile and Message Profile
	2.1.4. Compare Original Trace File With Idealized Trace File
	2.1.5. Remove Serialization
	2.1.6. Compare Two Trace Files
	2.1.7. Analyze Optimized Communications

	2.2. Improving Intra-process Performance
	2.2.1. Run Basic Hotspots Analysis
	2.2.2. Interpret Results

	3. Summary
	4. Key Terms

