

Frequently Asked Questions
for Intel® Trace Analyzer and
Collector

Document Number: 318118-004

Frequently Asked Questions for Intel® Trace Analyzer and Collector

2

Contents
Legal Information ... 3
1. General Questions about Intel® Trace Analyzer and Collector .. 5

1.1. What are some key things I can learn about my program using Intel® Trace Analyzer and
Collector? ... 5
1.2. Will Intel® Trace Analyzer and Collector only work with Intel® MPI Library? 5
1.3. Can Intel® Trace Analyzer and Collector be used on applications for Intel® Many
Integrated Core Architecture (Intel® MIC Architecture)? .. 5
1.4. What file and directory permissions are required to use Intel® Trace Analyzer and
Collector? ... 5
1.5. Can I import or export trace data to/from Intel® Trace Analyzer and Collector? 6
1.6. What size MPI application can I analyze with Intel® Trace Analyzer and Collector? 6
1.7. Can I use Intel® Trace Analyzer and Collector with Intel® VTune™ Amplifier XE, Intel®
Inspector XE, or other analysis tools? .. 6

2. General Questions about Intel® Trace Collector ... 7
2.1. Should I recompile/relink my application to collect information? 7
2.2. What file format is the trace data collected in? ... 7
2.3. How do I control which part of my application should be profiled? 7
2.4. How can I control the amount of data collected to a reasonable amount? What is a
reasonable amount? .. 8
2.5. How can I limit the memory consumption of Intel® Trace Collector? 8
2.6. How can I manage the Intel® Trace Collector API calls? .. 9
2.7. What happens when a program fails? .. 9
2.8. I cannot find the trace file. Where is it? .. 10
2.9. What is this “Bad Clock Resolution” all about? ... 10
2.10. I get “Error:libVT.a: file not recognized”. What’s wrong? ... 10

3. General Questions about Intel® Trace Analyzer ... 11
3.1. How can I analyze the collected information? .. 11
3.2. What are Views in the Intel® Trace Analyzer? ... 11
3.3. What are Charts in the Intel® Trace Analyzer? .. 11
3.4. What is aggregation? How many types of it are available in the Intel® Trace Analyzer? ... 12
3.5. My message profile shows ridiculously great numbers. What went wrong? 12
3.6. Why do user-defined activities not work? .. 12
3.7. Why are some messages not shown? ... 12
3.8. I have a large application and my Charts are a bit crowded. Is there some way to filter
particular functions, messages, and collective operations in Intel® Trace Analyzer? 13

Frequently Asked Questions for Intel® Trace Analyzer and Collector

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S
PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD
INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY
CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711, G.722,
G.722.1, G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169, G.723.1, G.726,
G.728, G.729, G.729.1, GSM AMR, GSM FR are international standards promoted by ISO, IEC, ITU,
ETSI, 3GPP and other organizations. Implementations of these standards, or the standard enabled
platforms may require licenses from various entities, including Intel Corporation.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-
GOLD, Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core,
Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow.
logo, Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru
soundmark, Itanium, Itanium Inside, MCS, MMX, Moblin, Pentium, Pentium Inside, Puma, skoool, the
skoool logo, SMARTi, Sound Mark, Stay With It, The Creators Project, The Journey Inside,
Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS
are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

4

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Copyright © 2003-2014, Intel Corporation. All rights reserved.

This product includes software developed by the University of California, Berkley and its contributors,
and software derived from the Xerox Secure Hash Function. It includes software developed by the
University of Tennessee, see appendix A for details. It also includes libraries developed and © by SGI
and Michael Riepe. They are licensed under the GNU Lesser General Public License (LGPL) or Runtime
General.

Their source code can be downloaded from ftp://ftp.ikn.intel.com/pub/opensource.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

5

1. General Questions about Intel® Trace
Analyzer and Collector

1.1. What are some key things I can learn about my
program using Intel® Trace Analyzer and Collector?

The Intel® Trace Analyzer and Collector is a graphical tool used primarily for MPI-based programs. It
helps you understand your application’s behavior across its full runtime. It can help find temporal
dependencies in your code and communication bottlenecks across the MPI ranks. It also checks the
correctness of your application and points you to potential programming errors, buffer overlaps, and
deadlocks.

1.2. Will Intel® Trace Analyzer and Collector only work
with Intel® MPI Library?

No, the Intel® Trace Analyzer and Collector support all major MPICH2-based implementations. If
you’re wondering whether your MPI library can be profiled using the Intel Trace Analyzer and
Collector, you can run a simple ABI-compatibility check by compiling the provided mpiconstants.c file
and verifying the values with the ones provided in the Intel® Trace Collector Reference Manual.

1.3. Can Intel® Trace Analyzer and Collector be used on
applications for Intel® Many Integrated Core
Architecture (Intel® MIC Architecture)?

Yes, Intel® MIC Architecture is fully supported by the Intel® Trace Analyzer and Collector.

1.4. What file and directory permissions are required to
use Intel® Trace Analyzer and Collector?

You do not need to install special drivers, kernels, or extra permissions. Simply install the Intel®
Trace Analyzer and Collector in the $HOME directory and link it with your application of choice from
there.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

6

1.5. Can I import or export trace data to/from Intel®
Trace Analyzer and Collector?

Yes, you can export the data from any of the Profile charts (Function Profile, Message Profile, and
Collective Operations Profile) as part of the Intel® Trace Analyzer interface. To do this, open one
of these profiles in the GUI, right-click to bring up the Context Menu, and select the Export Data
option. The data will be saved in simple text format for easy reading.

1.6. What size MPI application can I analyze with Intel®
Trace Analyzer and Collector?

It depends on how large or complex your application is, how many MPI calls you are making, and for
how long you are running. There are no internal limitations on the size of the MPI job but there are
plenty of external ones. It all depends on how much memory is available on the system (per core)
both for the application, the MPI library, and for the Intel® Trace Collector processes, as well as disk
space availability. Any additional flags enabled (for example, storing call stack and source code
locations) cause an increase in the size of the trace file. Filtering out unimportant information is
always a good solution to reducing trace files. For more information, refer to the Reducing Trace File
Size Tutorial.

1.7. Can I use Intel® Trace Analyzer and Collector with
Intel® VTune™ Amplifier XE, Intel® Inspector XE, or
other analysis tools?

While these tools would collect information separate from each other, in their own format, it’s easy
enough to use the Intel® VTune™ Amplifier XE and Intel® Inspector XE tools under an MPI
environment. Check each tool’s respective User’s Guide for more info on Viewing Collected MPI Data.

You can use tools such as Intel VTune Amplifier XE and Intel Inspector XE for node-level analysis, and
use the Intel Trace Analyzer and Collector for cluster-level analysis.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

7

2. General Questions about Intel® Trace
Collector

2.1. Should I recompile/relink my application to collect
information?

It depends on your application.

• For Windows* OS, you have to relink your application by using the –trace link-time flag.

• For Linux* OS (and if your application is dynamically linked), you do not need to relink or
recompile. Simply use the –trace option at runtime (for example: mpirun –trace).

2.2. What file format is the trace data collected in?
Intel® Trace Collector stores all collected data in Structured Tracefile Format (STF) which allows for
better scalability across both time and processes. For more details, refer to the “Structured Tracefile
Format” section of the Intel® Trace Collector Reference Manual.

2.3. How do I control which part of my application
should be profiled?

The Intel® Trace Collector provides several options to control the data collection. By default, only
information about MPI calls is collected. If you’d like to filter which MPI calls should be traced, create
a configuration file and set the VT_CONFIG environment variable.

Set up time frames within which Intel® Trace Collector will save the events into the trace
file by specifying the TIME-WINDOWS option in the configuration file.

If you’d like to expand the information collected beyond MPI and include all user-level routines,
recompile your application with the –tcollect switch available as part of the Intel® Compilers. In
this case, Intel Trace Collector will gather information about all routines in the application, not just
MPI. You can similarly filter this via the –tcollect-filter compiler option. Note that since all user
functions are instrumented and profiled, the trace file may become huge. Use this capability with short
or small runs only.

If you’d like to be explicit about which parts of the code to be profiled, use the Intel Trace Collector
API calls. You can manually turn tracing on and off via a quick API call. You can also turn trace
collection on and off by inserting the MPI_Pcontrol function into the source code.

For more Information on all of these methods, refer to the Intel® Trace Collector Reference Manual.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

8

2.4. How can I control the amount of data collected to
a reasonable amount? What is a reasonable amount?

Each application is different in terms of the profiling data it can provide. The longer an application
runs, and the more MPI calls it makes, the larger the STF files will be. You can filter some of the
unnecessary information out by applying appropriate filters (see Question 2.3 for more details, check
out some tips on Intel® Trace Collector Filtering or refer to the tutorial on Reducing Trace File Size).
Additionally, you can be restricted by the resources allocated to your account; consult your cluster
administration about quotas and recommendations.

2.5. How can I limit the memory consumption of Intel®
Trace Collector?

During the application run, Intel® Trace Collector first stores trace data in memory buffers. There are
two options that control the allocation of these buffers: MEM BLOCKSIZE specifies the size of each
memory block in bytes, and MEMMAXBLOCKS determines the maximum number of memory blocks. Intel
Trace Collector will not exceed the memory limits set by MEMMAXBLOCKS multiplied by MEM
BLOCKSIZE. When this trace data memory is exhausted, one of three actions is taken:

• If the AUTOFLUSH option is enabled (default), the collected trace data is flushed to disk, and
the trace collection continues. The spill files are automatically merged when the application finalizes,
so that all records will appear in the trace file.

• If AUTOFLUSH is disabled and MEM OVERWRITE is enabled, the trace buffers will be overwritten
from the beginning, in effect recording the last n records.

• Otherwise, the trace collection stops, in effect collecting the first n records.

Placing trace data in main memory can slow down the application if it needs the memory itself. Setting
MEM MAXBLOCKS puts a hard limit on the amount of memory used by Intel Trace Collector, but can
disrupt the application when a process waits for flushing of trace data. To avoid this, Intel Trace
Collector can be told to start flushing earlier in the background with the MEM FLUSHBLOCKS option.
This option is only available in more recent thread-safe versions of Intel Trace Collector.

To understand how much memory is currently in use, Intel Trace Collector can add counter data to the
trace. If enabled, each process will store its own values for these counters in the trace each time they
change. This makes it possible to take the effect of buffer handling into account when doing the
analysis of the trace. These counters are not enabled by default. It is necessary to add the following
lines to a configuration file (see usage of VT_CONFIG) to enable each counter:
COUNTER data_in_ram ON COUNTER data_in_file ON COUNTER flush_active ON

At runtime, Intel Trace Collector also provides feedback on the amount of data collected: with the
default setting of 500MB for the MEM INFO configuration option a message is printed each time more
than this amount of new data is recorded by a process. The value is chosen so that the message
serves as a warning when the amount of trace data exceeds the amount that can usually be handled
without problems. In order to use it as a kind of progress report a much lower value would be more
appropriate.

Use the KEEP_RAW_EVENTS setting to disable the MERGE phase and reduce memory/CPU consumption
at the Finalize phase.

http://software.intel.com/en-us/articles/intel-trace-collector-filtering

Frequently Asked Questions for Intel® Trace Analyzer and Collector

9

2.6. How can I manage the Intel® Trace Collector API
calls?

The API routines greatly extend the functionality of Intel® Trace Collector. Unfortunately, manual
instrumenting the application source code with the Intel Trace Collector API makes code maintenance
harder. An application that contains calls to the Intel Trace Collector API requires the Intel Trace
Collector library to link and incurs a certain profiling overhead. The dummy API library libVTnull.a
helps in this situation: all the API calls map to empty subroutines, and no trace data is ever gathered
if an application is linked to it. Still, the extraneous function calls remain and may cause a slight
overhead.

It is recommended that the C pre-processor (or an equivalent tool for Fortran) is used to guard all the
calls to the Intel Trace Collector API by #ifdef directives. This will allow easy generation of a plain
vanilla version and an instrumented version of a program.

2.7. What happens when a program fails?
The Intel® Trace Collector library stores trace data first in buffers in the application memory, and then
in flush files (one per MPI process) when the buffers have been filled. In normal operation, the library
will merge the trace data from each process during execution of the MPI_Finalize() routine, and
write the trace data into a single trace file suitable for input to Intel® Trace Analyzer. If a program
fails, MPI_Finalize() is never executed, and the traditional Intel Trace Collector does not write a
trace file. To get a trace file until the program crash, you can link against the fail-safe version
libVTfs.

Troubleshooting:

The Intel Trace Collector library can report four basic error classes:

1. Setup errors

2. Invalid configuration file format

3. Erroneous use of the API routines

4. Insufficient memory

The first category includes invalid settings of the VT_ environment variables, failure to open the
specified trace file and so on. A warning message is printed; the library ignores the erroneous setup
and tries to continue with default settings.

For the second class, a warning message is printed, the faulty configuration file line is ignored, and
the parser continues with the next line.

When an Intel Trace Collector API routine is called with invalid parameters, a negative value is
returned (as a function result in C, in the error parameter in Fortran), and operation continues.
Invoking any API routines before MPI_Init() or after MPI_Finalize() is considered erroneous, and
the call is silently ignored.

An insufficient memory error can occur during execution of an API routine or within any MPI routine if
tracing is enabled. In the first case, an error code (VT_ENOMEM or VTENOMEM) is returned to the calling
process; in any case, Intel Trace Collector prints an error message and attempts to continue by
disabling the collection of trace data. Within MPI_Finalize(), the library will try to generate a trace
file from the data gathered before the insufficient memory error.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

10

Although Intel Trace Collector tries to handle out-of-memory situations gracefully, library calls in the
application might not be as tolerant, or the operating system does not handle such a situation well
enough. To avoid a memory error in the first place, try to limit the amount of trace data as explained
in the section Limiting Memory Consumption. The memory requirements of Intel Trace Collector can
be reduced with the MEM BLOCKSIZE and MEM MAXBLOCKS configuration options. The AUTOFLUSH
option needs to remain enabled if you want to see a trace of the whole application run.

2.8. I cannot find the trace file. Where is it?
Unless told otherwise in the configuration file, Intel® Trace Collector will write the trace data to the
file argv[0].stf, with argv[0] being the application name in the command line (same as
getarg(0) in Fortran). Note that your MPI library or the MPI execution script may interfere with
argv[0], and that only the process actually writing the trace file (usually the one with rank 0 in
MPI_COMM_WORLD) will look at it. A relative pathname will be interpreted relative to that process
current working directory.

You can however change the trace file name with the LOGFILE NAME directive in a configuration file.

If it turns out that Intel Trace Collector cannot create the specified trace file, it will attempt to write to
the file /tmp/VT <PID>.stf, with <PID> being the Unix* process id of the trace file-writing MPI
process.

In any case, an information message with the actual trace file name will be printed by Intel Trace
Collector within MPI_Finalize().

On systems where not all processes see the same files (especially in environment where Intel® Xeon
Phi™ Co-processor cards are present), be sure to look for the trace file in the correct process file
system. You can influence which process will write the file by setting an environment variable or by a
directive in the configuration file.

2.9. What is this “Bad Clock Resolution” all about?
If the clock resolution is very low (the timer function returns the same value for a long period of time),
then many events will be recorded on the same time stamp and analysis of such a trace becomes very
hard. In particular the Global Timeline becomes useless.

If Intel® Trace Collector detects this problem, it issues a warning like:
minimum clock increment 1e-3s is very high, please fix system setup to obtain
better traces

The minimum clock increment is always stored in the trace file info, because the timer base also listed
there may be lower than the real value.

2.10. I get “Error:libVT.a: file not recognized”. What’s
wrong?

Make sure that the libraries are installed using the ./install scripts provided with the tool.
Otherwise, the libraries will be locked and will be in a format not recognized as valid, thus showing the
error above.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

11

3. General Questions about Intel® Trace
Analyzer

3.1. How can I analyze the collected information?
Once you have collected the trace data, you can analyze it via the Graphical Interface called the
Intel® Trace Analyzer. Simply call the command ($ traceanalyzer) or double-click on the Intel
Trace Analyzer icon and navigate to your STF files via the File Menu.

You can get started by opening up the Event Timeline chart (under the Charts Menu) and zooming
in at an appropriate level.

Check out the Detecting and Removing Unnecessary Serializatio Tutorial on ideas how to get started.
For details on all Intel Trace Analyzer functionality, refer to the Intel® Trace Analyzer Reference
Manual.

3.2. What are Views in the Intel® Trace Analyzer?
A View holds a collection of Charts in a single window. Those Charts, inherent in the same View, use
the same perspective on the data. This perspective is made up of the following attributes: the time
interval, process aggregation, function aggregation and filters. It helps to easily analyze a trace file by
looking at multiple partitions of the data from various points of view.

Whenever an attribute in the current perspective is changed for one of the Charts, all other Charts
change, too. You can use several Views at the same time, as it is a very flexible and variable
mechanism for exploring, analyzing and comparing trace data.

3.3. What are Charts in the Intel® Trace Analyzer?
Charts in Intel® Trace Analyzer are graphical or alphanumerical diagrams that are parameterized with
a time interval, a process grouping, a function grouping and an optional filter. Together they define
the structure in which data is presented and the amount of data to be displayed.

The Charts supported by Intel Trace Analyzer are divided into:

• Timelines: the Event Timeline, the Qualitative Timeline, the Quantitative Timeline and
the Counter Timeline.

• Profiles: the Function Profile, the Message Profile, and the Collective Operations
Profile.

While the Timelines show trace data in graphical form over a horizontal axis representing runtime, the
Profiles show statistical data. You can find all these Charts under the Charts menu item. When you
open a new file in the Intel Trace Analyzer, the default display is a View that contains the Function
Profile Chart for the opened file.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

12

3.4. What is aggregation? How many types of it are
available in the Intel® Trace Analyzer?

Aggregation reduces the amount of data displayed by accumulating the events into thread groups and
into function groups.

Process Aggregation focuses on the processes that are important and aggregates the results into
Process Groups. To construct and/or choose the appropriate process groups, use the Process
Aggregation dialog box (go to Advanced > Process Aggregation).

Function Aggregation focuses on a subset of functions and aggregates them into Function Groups,
without causing a distraction for other functions that are currently not significant. Use the Function
Aggregation dialog box (go to Advanced > Function Aggregation) to do this.

3.5. My message profile shows ridiculously great
numbers. What went wrong?

Most probably the message was recorded in reverse order meaning that the message was received
before it was sent. This can happen on systems with coarse clock resolution and/or very fast
communication hardware. If the clock resolution cannot be increased, there is currently no solution for
it.

3.6. Why do user-defined activities not work?
In order to minimize the instrumentation overhead, Intel® Trace Collector does not check for global
consistency of the activity codes specified by calls to VT_symdef() or VTSYMDEF(). When using user
defined activities you should ensure that:

• The same code is used for the same activity in all processes.

• Two different symbols never share the same code.

If these rules are violated, Intel® Trace Analyzer might complain about duplicate activities, or
activities may be mislabeled in the Intel Trace Analyzer displays.

3.7. Why are some messages not shown?
In order for messages to be indicated in the Intel® Trace Analyzer displays, both the calls to the
sending and the receiving MPI routines must be traced. For non-blocking receives, the call to the MPI
wait or test routine that did complete the receive request must be logged.

If tracing has been disabled during runtime it can happen that for some messages, either the sending
or the receiving call has not been traced. As a consequence, these messages are not shown by Intel
Trace Analyzer, and other messages can appear to be sent to or received at the wrong place.
Similarly, filtering out some of the above mentioned MPI routines has the same effect.

Frequently Asked Questions for Intel® Trace Analyzer and Collector

13

3.8. I have a large application and my Charts are a bit
crowded. Is there some way to filter particular
functions, messages, and collective operations in
Intel® Trace Analyzer?

Use the filtering and tagging capability of Intel® Trace Analyzer to look for specific functions,
messages and/or collective operation.

To access the Filtering dialog box, go to Advanced > Filtering. This dialog box enables you to
specify filter expressions that describe which function events, messages, and collective operations are
to be analyzed and shown. You can generate the filter expression through a graphical interface or type
it in manually. If the current expression cannot be converted into a proper filter definition, then the
dialog shows a red warning that indicates the reason. After applying a filtering expression, the Charts
will display only events that satisfy the condition of the expression. All other events will be
suppressed.

Tagging works the same way as filtering and uses the same grammar to create the tagging
expression. The only difference is that tagging highlights events that satisfy the specific user-defined
conditions. That emphasis varies depending on the Chart to which the tagging expression is applied.
For specific details, refer to the Intel® Trace Analyzer Reference Manual.

	Legal Information
	1. General Questions about Intel® Trace Analyzer and Collector
	1.1. What are some key things I can learn about my program using Intel® Trace Analyzer and Collector?
	1.2. Will Intel® Trace Analyzer and Collector only work with Intel® MPI Library?
	1.3. Can Intel® Trace Analyzer and Collector be used on applications for Intel® Many Integrated Core Architecture (Intel® MIC Architecture)?
	1.4. What file and directory permissions are required to use Intel® Trace Analyzer and Collector?
	1.5. Can I import or export trace data to/from Intel® Trace Analyzer and Collector?
	1.6. What size MPI application can I analyze with Intel® Trace Analyzer and Collector?
	1.7. Can I use Intel® Trace Analyzer and Collector with Intel® VTune™ Amplifier XE, Intel® Inspector XE, or other analysis tools?

	2. General Questions about Intel® Trace Collector
	2.1. Should I recompile/relink my application to collect information?
	2.2. What file format is the trace data collected in?
	2.3. How do I control which part of my application should be profiled?
	2.4. How can I control the amount of data collected to a reasonable amount? What is a reasonable amount?
	2.5. How can I limit the memory consumption of Intel® Trace Collector?
	2.6. How can I manage the Intel® Trace Collector API calls?
	2.7. What happens when a program fails?
	2.8. I cannot find the trace file. Where is it?
	2.9. What is this “Bad Clock Resolution” all about?
	2.10. I get “Error:libVT.a: file not recognized”. What’s wrong?

	3. General Questions about Intel® Trace Analyzer
	3.1. How can I analyze the collected information?
	3.2. What are Views in the Intel® Trace Analyzer?
	3.3. What are Charts in the Intel® Trace Analyzer?
	3.4. What is aggregation? How many types of it are available in the Intel® Trace Analyzer?
	3.5. My message profile shows ridiculously great numbers. What went wrong?
	3.6. Why do user-defined activities not work?
	3.7. Why are some messages not shown?
	3.8. I have a large application and my Charts are a bit crowded. Is there some way to filter particular functions, messages, and collective operations in Intel® Trace Analyzer?

