

Tutorial: Detecting and Removing
Unnecessary Serialization

Intel® Trace Analyzer and Collector

2

Contents
Legal Information ... 3

1. Overview .. 4
1.1. Starting Intel® Trace Analyzer ... 4
1.2. Introducing the Intel® Trace Analyzer GUI ... 5
1.3. Working with the Intel® Trace Analyzer and Collector Examples ... 6

1.3.1. Compiling and Instrumenting Test Files on Linux* OS .. 6
1.3.2. Compiling and Instrumenting Test Files on Windows* OS .. 7
1.3.3. Analyzing Trace Data .. 7

2. Detecting and Removing Serialization .. 9
2.1. Prepare for Analysis ... 10
2.2. Ungroup MPI Functions .. 11
2.3. Detect Serialization in Function Profile and Message Profile .. 12
2.4. Compare Original Trace File With Idealized Trace File ... 13
2.5. Remove Serialization ... 15
2.6. Compare Two Trace Files .. 16

3. Summary ..18

4. Key Terms ..19

Legal Information

3

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to obtain
the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Intel® Trace Analyzer ships libraries licensed under the GNU Lesser Public License (LGPL) or Runtime
General Public License. Their source code can be downloaded from
ftp://ftp.ikn.intel.com/pub/opensource.

4

1. Overview

 Intel® Trace Analyzer and Collector enables you to understand MPI application behavior and quickly
find bottlenecks to achieve high performance for parallel cluster applications.

This tutorial helps you improve the application performance by removing serialization. When your
application is serialized, much time is spent on communication of processes slowing down the execution.
Learn how to detect and remove serialization in your application using Intel® Trace Analyzer.

About This Tutorial This tutorial demonstrates a workflow applied to a sample program. You can
ultimately apply the same workflow to your own application(s):

• Analyze the application with the help of the Intel® Trace Analyzer charts, to find
communication problems

• Detect serialization in communications between processes

• Resynchronize the processes to remove serialization

• Review the application

Estimated Duration 10-15 minutes

Learning
Objectives

After you complete this tutorial, you should be able to:

• Detect serialization in your application with the help of the Intel® Trace Analyzer

• Improve overall performance

More Resources Learn more about the Intel® Trace Analyzer and Collector in the User and Reference
Guides:

• Intel® Trace Analyzer User and Reference Guide

• Intel® Trace Collector User and Reference Guide

The guides are available at the Intel® Trace Analyzer and Collector Product Page.

You can submit your feedback on the documentation at
http://www.intel.com/software/products/softwaredocs_feedback/.

1.1. Starting Intel® Trace Analyzer

 Invoke the Intel® Trace Analyzer GUI.

Linux* OS:

Enter the command:

$ traceanalyzer poisson_sendrecv.single.stf

OS X*:

1. On the menu bar select Go > Applications > Intel Trace Analyzer.

2. Open the poisson_sendrecv.single.stf trace file from File > Open.

Windows* OS:

• From the command line prompt, enter the command:

$ traceanalyzer poisson_sendrecv.single.stf

https://software.intel.com/en-us/intel-trace-analyzer
http://www.intel.com/software/products/softwaredocs_feedback/

Overview

5

• From the graphical user interface, there are two options:

• Go to Start > All Programs > Intel Parallel Studio XE version > Analyzers > Intel Trace
Analyzer version and open the tracefile from File > Open.

• Navigate to an .stf file and double-click to open it in Intel Trace Analyzer.

1.2. Introducing the Intel® Trace Analyzer GUI

Use the Charts menu to open and navigate the various Intel Trace Analyzer charts within the
current tracefile and use them to analyze the application trace data.

Use the Toolbar buttons to control the display of the currently open trace file.

The Trace Map displays the MPI function activity for the application over time. MPI function
activity is displayed in red.

Drag your mouse on a section in the Trace Map to zoom into the relevant subsets of tracefile
charts. This map appears for all the charts.

The currently open chart is the Event Timeline. This chart displays individual process activities
over time. Horizontal bars represent the processes with the functions called in these processes.
The bars consist of colored rectangles labeled with the function names. Black lines indicate
messages sent between processes. These lines connect sending and receiving processes. Blue
lines represent collective operations, such as broadcast or reduce operations.

To change the displayed chart, go to Charts.

Tutorial: Detecting and Removing Serialization for Intel® Trace Analyzer and Collector

6

The Status Bar displays the exact time point and function type when you hover the mouse over
the processes shown in the Event Timeline.

1.3. Working with the Intel® Trace Analyzer and
Collector Examples

 You can find the Intel® Trace Analyzer and Collector examples directory at
<install_dir>/examples. This topic explains how to create a trace file for the vtjacobic executable
file. You can apply the same principles to other sample files and your own applications.

1.3.1. Compiling and Instrumenting Test Files on Linux* OS
Before analyzing sample trace files, set up your working directory as follows.

1. Copy the examples directory into a shared directory, which is accessible by all nodes of the
cluster.

2. Clean up the directory content and compile and execute the C and Fortran executable files,
entering the following commands:

gmake distclean
gmake all

The resulting output will look as follows:

vnallpair
vnallpairc
vnjacobic
vnjacobif
vtallpair
vtallpairc
vtcounterscopec
vtjacobic
vtjacobif

NOTE
The executable files listed above have already been linked with the appropriate Intel® Trace Collector
libraries.

To analyze trace the vtjacobic executable, do the following:

1. Create a vtjacobic_inst directory and set the following environment variable:

setenv VT_LOGFILE_PREFIX vtjacobic_inst

This environment variable ensures that the trace files for the analysis appear in the created
directory.

2. To run your MPI application, enter the command:

mpirun -n 4 -trace ./vtjacobic

The vtjacobic_inst directory should now contain the following files:

 . vtjacobic.stf.dcl vtjacobic.stf.msg.anc
.. vtjacobic.stf.frm vtjacobic.stf.pr.0
vtjacobic.prot vtjacobic.stf.gop vtjacobic.stf.pr.0.anc
vtjacobic.stf vtjacobic.stf.gop.anc vtjacobic.stf.sts
vtjacobic.stf.cache vtjacobic.stf.msg

Overview

7

For details, refer to the Intel® MPI Library documentation.

1.3.2. Compiling and Instrumenting Test Files on Windows* OS
1. Create a shared directory which is accessible to all nodes of the cluster and copy the examples

directory into it.

2. Clean up the directory content:

nmake distclean

To compile and execute the C and Fortran executable files, enter the following command:

nmake all MPIDIR="<install-dir>\MPI\em64t"

The following C and Fortran executable files appear under the examples directory:

mpiconstants.exe
vnallpair.exe
vnallpairc.exe
vnjacobic.exe
vnjacobif.exe
vtallpair.exe
vtallpairc.exe
vtcounterscopec.exe
vtjacobic.exe
vtjacobif.exe
vttimertest.exe

NOTE
The MPIDIR makefile variable is explicitly set to the directory of the Intel MPI Library that supports 64-bit
address extensions.

For the executable files above, the following STF files are created:
timertest.stf
vtallpair.stf
vtallpairc.stf
vtcounterscopec.stf
vtjacobic.stf
vtjacobif.stf

1.3.3. Analyzing Trace Data
To analyze trace files, do the following:

1. To analyze the newly created vtjacobic.stf trace file, enter the following commands.

On Linux* OS:

$ traceanalyzer vtjacobic_inst/vtjacobic.stf

On Windows* OS:

> traceanalyzer vtjacobic.stf

Intel® Trace Analyzer displays the Flat Profile tab for vtjacobic.stf:

Tutorial: Detecting and Removing Serialization for Intel® Trace Analyzer and Collector

8

2. To view the Event Timeline chart, go to Charts > Event Timeline:

9

2. Detecting and Removing Serialization

 Use the Intel® Trace Analyzer to analyze an MPI application behavior to improve the application
performance.

This tutorial uses the sample trace files poisson_sendrecv.single.stf,
poisson_sendrecv.ideal.stf and poisson_icomm.single.stf to demonstrate how to detect and
remove serialization in your application.

Step 1: Prepare for
analysis

Use the Intel Trace Analyzer Event Timeline chart to have a closer look at a
single iteration of your application

Step 2: Detect
serialization

• Ungroup MPI functions to analyze MPI process activity in your application

• Analyze your application with Function Profile and Message Profile charts
opened at the same time

• Compare the original trace file with the idealized trace to identify
problematic interactions

Step 3: Remove Improve your application performance by replacing the problem-causing

Tutorial: Detecting and Removing Serialization for Intel® Trace Analyzer and Collector

10

serialization function

Step 4: Check your work Use the Intel Trace Analyzer Comparison chart to compare the serialized
application with the revised one

Key Terms
Idealized Tracefile
Serialization

2.1. Prepare for Analysis

 To analyze the application, start with the following steps:

1. Open the poisson_sendrecv.single.stf sample trace file.

2. Go to Charts > Event Timeline to open the Event Timeline.

NOTE
When you open a new tracefile, Function Profile and Performance Assistant charts open by
default. You can change the default chart in the Preferences dialog box (Options > Preferences >
Tracefile preferences).

3. In the Event Timeline, drag your mouse over a specific time interval to zoom into it.

4. Zoom deeper into the trace by selecting the single iteration.

This is the view of the zoom. The trace map shows the section within the trace that is displayed.
The Event Timeline chart shows the events that were active during the selected time.

Detecting and Removing Serialization

11

2.2. Ungroup MPI Functions

 Analyze MPI process activity in your application.

To see the particular MPI functions called in the application, right-click on MPI in the Event Timeline and
choose Ungroup Group MPI. This operation exposes the individual MPI calls.

Tutorial: Detecting and Removing Serialization for Intel® Trace Analyzer and Collector

12

After ungrouping the MPI functions, you see that the processes communicate with their direct neighbors
using MPI_Sendrecv at the start of the iteration.

This data exchange has a disadvantage: process i does not exchange data with its neighbor i+1 until the
exchange between i-1 and i is complete. This delay appears as a staircase resulting with the processes
waiting for each other.

The MPI_Allreduce at the end of the iteration resynchronizes all processes; that is why this block has the
reverse staircase appearance.

2.3. Detect Serialization in Function Profile and
Message Profile

 Analyze your application with several charts opened at the same time.

In the Function Profile chart, open the Load Balance tab.

Go to the Charts menu to open a Message Profile.

Detecting and Removing Serialization

13

In the Load Balance tab, expand MPI_Sendrecv and MPI_Allreduce. The Load Balancing indicates that
the time spent in MPI_Sendrecv increases with the process number, while the time for MPI_Allreduce
decreases.

Examine the Message Profile Chart down to the lower right corner. The color coding of the blocks indicates
that messages travelling from a higher rank to a lower rank need proportionally more time while the
messages travelling from a lower rank to a higher rank reveal a weak even-odd kind of pattern.

Key Terms
Serialization

2.4. Compare Original Trace File With Idealized
Trace File

 See your application under the ideal circumstances and compare the original trace file with the
idealized one to isolate problematic interactions.

Create the idealized trace:

1. In the poisson_sendrecv.single.stf view, select Advanced > Idealization, or use the
toolbar button.

2. In the Idealization dialog box, check the idealization parameters. By default, Intel® Trace Analyzer
stores the idealized trace in the examples folder under the name of the input trace file with the
suffix ideal added before the .stf extension.

3. Click Start to idealize the trace poisson_sendrecv.single.stf.

Tutorial: Detecting and Removing Serialization for Intel® Trace Analyzer and Collector

14

To get more information on idealization, refer to the Idealization Dialog Box section of the Intel® Trace
Analyzer Reference Manual.

Compare the original trace file with the idealized trace:

1. In the poisson_sendrecv.single.stf view, select Advanced > Imbalance Diagram or press
the toolbar button.

2. In the Imbalance Diagram dialog box, press the Open Another File button, navigate to the
idealized trace poisson_sendrecv.ideal.stf and select it.

3. Click OK.

Detecting and Removing Serialization

15

4. In the Imbalance Diagram window, click the Total Mode button and select Breakdown Mode.

You can see that MPI_Sendrecv is the most time-consuming function. The imbalance weight is displayed
in pink color and comprises about 10% for the MPI_Sendrecv function. This is the time the processes
spend waiting for each other.

Key Terms
Idealized trace file

2.5. Remove Serialization

 You can improve the performance of the poisson sample program by replacing the serial
MPI_Sendrecv with non-blocking communication: MPI_Isend and MPI_Irecv.

Once corrected, the single iteration of the revised program will look similar to:

Tutorial: Detecting and Removing Serialization for Intel® Trace Analyzer and Collector

16

Since poisson_sendrecv.single.stf is a striking example of serialization, almost all of the Intel®
Trace Analyzer charts show this interesting pattern. But in the real-world cases, it may be necessary to
formulate a hypothesis regarding how the program should behave and to check this hypothesis using the
most suitable chart.

Key Terms
Serialization

2.6. Compare Two Trace Files

 Compare two trace files with the help of the Comparison View. To open a Comparison View for the
original application trace file (poisson_sendrecv.single.stf), go to View > Compare. In the dialog
that appears, choose the trace file of the revised application (poisson_icomm.single.stf). The
Comparison View shows an Event Timeline for each trace file and a Comparison Function Profile Chart.

Zoom into the first iteration in each trace file. The Comparison View looks similar to:

Detecting and Removing Serialization

17

In the Comparison View, you can see that using non-blocking communication helps to remove serialization
and decrease the time of communication of processes.

Key Terms
Serialization

18

3. Summary

 You have completed the Detecting and Removing Unnecessary Serialization tutorial. The following is
the summary the important things to remember when using the Intel® Trace Analyzer for detecting and
avoiding serialization in your application.

Step Tutorial Recap Key Tutorial Take-aways

1. Prepare for
Analysis

Prepared for the application analysis. Use the Event Timeline chart to see
overall process activity and zoom into the
trace to look at the single iteration of the
application.

2. Detect
Serialization

Used the Event Timeline, Function
Profile, Message Profile and Imbalance
Diagram to detect serialization that slows
down the application.

• Ungroup MPI functions to identify
which functions slow down the
application.

• Use the Function Profile and Message
Profile charts to see how much time
is spent in MPI.

• Generate the idealized trace and
compare it with the original trace to
get an insight on your application
under the ideal circumstances and
isolate problematic interactions.

3. Remove
Serialization

Removed serialization by replacing the
problem-causing function.

• Generate the trace file of the revised
application to see if the application
spends less time on communication
now.

• In the real-world cases, it may be
necessary to formulate a hypothesis
regarding how the program should
behave and to check this hypothesis
using the most suitable chart.

4. Check Your
Work

Compared the original trace file with the
trace file of the revised application.

Next step: Generate your own trace file for analysis. Then use Intel® Trace Analyzer to detect and remove
serialization in your application.

19

4. Key Terms

 The following terms are used throughout this tutorial:

Idealized trace file: A trace file of the application under ideal circumstances - infinite bandwidth and zero
latency.

Serialization: The result of usage of blocking communication, in which process i does not exchange data
with its neighbor i+1 until the exchange between i-1 and i is complete. This delay appears as a staircase
in the Event Timeline chart.

	Tutorial: Detecting and Removing Unnecessary Serialization

	Legal Information
	1. Overview
	1.1. Starting Intel® Trace Analyzer
	1.2. Introducing the Intel® Trace Analyzer GUI
	1.3. Working with the Intel® Trace Analyzer and Collector Examples
	1.3.1. Compiling and Instrumenting Test Files on Linux* OS
	1.3.2. Compiling and Instrumenting Test Files on Windows* OS
	1.3.3. Analyzing Trace Data

	2. Detecting and Removing Serialization
	2.1. Prepare for Analysis
	2.2. Ungroup MPI Functions
	2.3. Detect Serialization in Function Profile and Message Profile
	2.4. Compare Original Trace File With Idealized Trace File
	2.5. Remove Serialization
	2.6. Compare Two Trace Files

	3. Summary
	4. Key Terms

