

Tutorial: Detecting Errors with MPI
Correctness Checker
Intel® Trace Analyzer and Collector for Linux* OS

2

Contents
Legal Information ... 3

1. Overview .. 4
1.1. Prerequisites ... 4

1.1.1. Required Software ... 4
1.1.2. Setting Up the Environment Variables ... 5

2. Detecting and Resolving Errors .. 6
2.1. Correctness Checker Configuration Options ... 6
2.2. Instrumenting an Example with Data Type Mismatch .. 7
2.3. Instrumenting an Example with a Deadlock ... 8

2.3.1. Analyzing Source Code .. 9
2.3.2. Resolving the Deadlock .. 11

3. Summary ..13

Legal Information

3

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to obtain
the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Intel® Trace Analyzer ships libraries licensed under the GNU Lesser Public License (LGPL) or Runtime
General Public License. Their source code can be downloaded from
ftp://ftp.ikn.intel.com/pub/opensource.

4

1. Overview
Intel® Trace Analyzer and Collector enables you to understand MPI application behavior and quickly find
bottlenecks to achieve high performance for parallel cluster applications. Intel® Trace Collector generates
trace files for MPI applications, while Intel® Trace Analyzer visualizes the MPI application behavior using
the generated trace file.

Besides the regular performance analysis, Intel® Trace Analyzer and Collector can perform correctness
checking of MPI applications, which can help you:

• Find programming mistakes in the application, including potential portability problems and
violations of the MPI standard. Normally, these mistakes do not immediately cause problems, but
might when switching to different hardware or a different MPI implementation.

• Detect errors in the execution environment.

About This Tutorial This tutorial demonstrates the correctness checking workflow applied to sample MPI
applications with the following types of errors:

• Data type mismatch

• Deadlock

You can ultimately apply the same steps to your own application(s).

Estimated Duration 10-15 minutes.

Learning
Objectives

After you complete this tutorial, you should be able to:

• Run the correctness checker for your own applications

• Detect and resolve various errors in your applications

More Resources Learn more about the Intel® Trace Analyzer and Collector in the User and Reference
Guides available at:

• Intel® Trace Collector User and Reference Guide

• Intel® Trace Analyzer User and Reference Guide

You can submit your feedback on the documentation at
http://www.intel.com/software/products/softwaredocs_feedback/.

1.1. Prerequisites
This section describes the steps you need to do before you start using the Intel® Trace Analyzer and
Collector.

1.1.1. Required Software
To perform all the steps described in this tutorial, you need the following software installed on your
system:

• Intel® compilers

• Intel® MPI Library

• Intel® Trace Analyzer and Collector

All of these products are installed as part of Intel® Parallel Studio XE Cluster Edition.

http://www.intel.com/software/products/softwaredocs_feedback/
https://software.intel.com/en-us/intel-parallel-studio-xe

Overview

5

1.1.2. Setting Up the Environment Variables
Set the required environment variables by sourcing the psxevars.c[sh] script available at <install-
dir>/parallel_studio_xe_<version>.x.xxx/bin, where <install-dir> is the Intel® Parallel
Studio XE Cluster Edition installation directory. For example:
$ source psxevars.sh

6

2. Detecting and Resolving Errors
To demonstrate the process of correctness checking of MPI applications, this tutorial uses two sample
applications that have errors in the source code. All the sample applications eligible for correctness
checking are available at: <install-dir>/examples/checking. You can use these samples to
manually experiment with the functionality using the workflow described here.

Read the topics below to learn how to configure the correctness checker and how to detect and resolve
application errors using Intel® Trace Analyzer and Collector.

Configuration
Options

A list of Intel® Trace Collector configuration options for controlling the correctness
checking process.

Example 1: Data Type
Mismatch

A case where the types of data sent and received do not match, while the number
of bytes sent is the same.

Example 2: Deadlock A case where two processes simultaneously call blocking receive functions, making
them unable to call the succeeding sending functions, which causes the so-called
deadlock.

2.1. Correctness Checker Configuration Options
The table below lists the environment variables that help you configure the MPI correctness checking.
Please, look through them to understand their purpose. They all are used in the examples given in this
tutorial.

Environment Variable Value Description

VT_DEADLOCK_TIMEOUT
<delay>

<delay> - time threshold

Default: 1m

Examples:

VT_DEADLOCK_TIMEOUT 1m

VT_DEADLOCK_TIMEOUT 10s

If no progress is observed in any process
for this amount of time, Intel Trace
Collector stops the application and writes
a trace file upon reaching this threshold,
assuming that a deadlock has occurred.

TIP
For interactive use, set this variable to a
small value like “10s” to detect the
deadlocks quickly without having to wait
long for the timeout.

VT_DEADLOCK_WARNING
<delay>

<delay> - time threshold

Default: 5m

Examples:

VT_DEADLOCK_WARNING 5m

Displays a
GLOBAL:DEADLOCK:NO_PROGRESS
warning if the time spent by MPI
processes in their last MPI call exceeds
the specified threshold. This warning
indicates a load imbalance or a deadlock
that cannot be detected, which may occur
when at least one process polls for
progress instead of blocking inside an
MPI call.

Detecting and Resolving Errors

7

VT_CHECK_TRACING <on |
off>

<on | off>

Default: off

When set to on, this variable enables you
to record all events including any MPI
errors found during the run and to create
a trace file.

VT_CHECK_MAX_ERRORS
<value>

<value> - maximum errors to
detect

Default: 1

Number of errors that has to be reached
by a process before aborting the
application. 0 disables the limit. Some
errors are fatal and always cause an
abort. Errors are counted per-process to
avoid the need for communication
among processes, as that has several
drawbacks, which outweigh the
advantage of a global counter.

2.2. Instrumenting an Example with Data Type
Mismatch
To experiment with the data type mismatch example, copy the contents of the <install-
dir>/itac/examples/checking/global/collective/datatype_mismatch/ directory to your
working directory:
$ cp -r <install-
dir>/itac_latest/examples/checking/global/collective/datatype_mismatch/ ~
$ cd ~/datatype_mismatch

Then compile and run the MPI_Bcast example located in the directory using the following commands:
$ mpiicc -g MPI_Bcast.c -o MPI_Bcast
$ mpirun -n 4 -check_mpi -genv VT_CHECK_MAX_ERRORS 0 MPI_Bcast

The command lines above use the following flags:

• -g – generate the debugging information in the object file to be able to analyze the source files

• -check_mpi – dynamically link the correctness checker library (VTmc.so)

• -genv VT_CHECK_MAX_ERRORS 0 – set the maximum of errors found to unlimited (1 by default)

After running the application you will get the following output:
...
[0] ERROR: GLOBAL:COLLECTIVE:DATATYPE:MISMATCH: error
[0] ERROR: Mismatch found in local rank [1] (global rank [1]),
[0] ERROR: other processes may also be affected.
[0] ERROR: No problem found in local rank [0] (same as global rank):
[0] ERROR: MPI_Bcast(*buffer=0x7fff1066e814, count=1, datatype=MPI_INT,
root=0, comm=MPI_COMM_WORLD)
[0] ERROR: main
(/checking/global/collective/datatype_mismatch/MPI_Bcast.c:50)
[0] ERROR: 1 elements transferred by peer but 4 expected by
[0] ERROR: the 3 processes with local ranks [1:3] (same as global ranks):
[0] ERROR: MPI_Bcast(*buffer=..., count=4, datatype=MPI_CHAR, root=0,
comm=MPI_COMM_WORLD)
[0] ERROR: main
(/checking/global/collective/datatype_mismatch/MPI_Bcast.c:53)
[0] INFO: GLOBAL:COLLECTIVE:DATATYPE:MISMATCH: found 1 time (1 error + 0
warnings), 0 reports were suppressed
[0] INFO: Found 1 problem (1 error + 0 warnings), 0 reports were suppressed.

The highlighted error messages refer to lines 50 and 53 in the MPI_Bcast.c source file:
...

Detecting and Resolving Errors with MPI Correctness Checker

8

39 int main (int argc, char **argv)
40 {
41 int rank, size;
42
43 MPI_Init(&argc, &argv);
44 MPI_Comm_size(MPI_COMM_WORLD, &size);
45 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
46
47 /* error: types do not match */
48 if(!rank) {
49 int send = 0;
50 MPI_Bcast(&send, 1, MPI_INT, 0, MPI_COMM_WORLD);
51 } else {
52 char recv[4];
53 MPI_Bcast(&recv, 4, MPI_CHAR, 0, MPI_COMM_WORLD);
54 }
55
56 MPI_Finalize();
57
58 return 0;
59 }

The above code example shows a mismatch in the data types within the MPI_Bcast function. While you
set the sent data type to int, the receiver expects a char. The number of transferred bytes is the same, so
normally this issue is not detected by MPI.

To fix the issue:

• in line 52, change the receiver type from char array to int.

• in line 53, change the MPI data-type argument from MPI_CHAR to MPI_INT, and the number of
received elements to 1.

 52 int recv;
 53 MPI_Bcast(&recv, 1, MPI_INT, 0, MPI_COMM_WORLD);

To check that you have eliminated the message checking errors, re-compile and re-run the application:
...
[0] INFO: Error checking completed without finding any problems.
...

2.3. Instrumenting an Example with a Deadlock
To experiment with the deadlock example, copy the contents of the <install-
dir>/itac/examples/checking/global/deadlock/hard/ directory to your working directory:
$ cp -r <install-dir>/itac_latest/examples/checking/global/deadlock/hard/ ~
$ cd ~/hard

Compile and run the example with the following commands:
$ mpiicc -g MPI_Recv.c -o MPI_Recv
$ mpirun -check_mpi -genv VT_CHECK_TRACING on -genv VT_DEADLOCK_TIMEOUT 20s -
genv VT_DEADLOCK_WARNING 25s -genv VT_PCTRACE on -n 2 MPI_Recv

The command lines above use the following flags:

• -g – generate the debugging information in the object file to be able to analyze the source files

• -check_mpi – dynamically link the correctness checker library (VTmc.so)

• -genv VT_CHECK_TRACING on – enable writing of the trace file .stf for analyzing in Intel®
Trace Analyzer (trace file is not written by default with VTmc.so)

• -genv VT_DEADLOCK_TIMEOUT 20s, -genv VT_DEADLOCK_WARNING 25s – see this section
for details

• -genv VT_PCTRACE on – enable recording of source code locations to the trace file

Detecting and Resolving Errors

9

The resulting output should look as follows:
...
[0] ERROR: no progress observed in any process for over 0:20 minutes, aborting
application
[0] WARNING: starting emergency trace file writing
[0] ERROR: GLOBAL:DEADLOCK:HARD: fatal error
[0] ERROR: Application aborted because no progress was observed for over 0:20
minutes,
[0] ERROR: check for real deadlock (cycle of processes waiting for data) or
[0] ERROR: potential deadlock (processes sending data to each other and
getting blocked
[0] ERROR: because the MPI might wait for the corresponding receive).
[0] ERROR: [0] no progress observed for over 0:20 minutes, process is
currently in MPI call:
[0] ERROR: MPI_Recv(*buf=0x7fff447cc494, count=1, datatype=MPI_CHAR,
source=1, tag=100, comm=MPI_COMM_WORLD, *status=0x7fff447cc450)
[0] ERROR: main (/checking/global/deadlock/hard/MPI_Recv.c:53)
[0] ERROR: [1] no progress observed for over 0:20 minutes, process is
currently in MPI call:
[0] ERROR: MPI_Recv(*buf=0x7fffaf31b9a4, count=1, datatype=MPI_CHAR,
source=0, tag=100, comm=MPI_COMM_WORLD, *status=0x7fffaf31b960)
[0] ERROR: main (/checking/global/deadlock/hard/MPI_Recv.c:53)
[0] INFO: Writing tracefile MPI_Recv.stf in /checking/global/deadlock/hard
[0] INFO: GLOBAL:DEADLOCK:HARD: found 1 time (1 error + 0 warnings), 0 reports
were suppressed
[0] INFO: Found 1 problem (1 error + 0 warnings), 0 reports were suppressed.
...

You can observe that the correctness checker reported a deadlock error that needs to be fixed. To dig
deeper into the reported problem, analyze the generated .stf file in Intel® Trace Analyzer.

2.3.1. Analyzing Source Code
You can use the Intel® Trace Analyzer to view the reported deadlock problem. Open the MPI_Recv.stf
file in Intel® Trace Analyzer:
$ traceanalyzer MPI_Recv.stf

The trace information may look as follows:

Detecting and Resolving Errors with MPI Correctness Checker

10

In the Event Timeline chart, yellow-bordered circles represent various issues in your application. The color
of each circle depends on the type of the particular diagnostic:

• The black color indicates an error.

• The gray color indicates a warning.

TIP
To suppress error messages and warnings, right-click the Event Timeline chart, open the Show menu, and
uncheck the Issues option. The black and gray circles disappear.

To determine which source code line is associated with an error message, right-click the issue on the Event
Timeline chart and select Details on Function, Issue from the context menu. The following dialog will
appear:

Detecting and Resolving Errors

11

Click the Show Source button shown in the figure above to open the Source View. You can see that line 53
is highlighted, which indicates that it causes the deadlock:

In this example both processes call the blocking MPI_Recv function at once, so none of them get to calling
the sender function, which causes the deadlock.

2.3.2. Resolving the Deadlock
To avoid deadlock situations, you can use the following approaches:

• Reorder MPI communication calls between processes.

• Implement non-blocking calls.

• Use MPI_Sendrecv or MPI_Sendrecv_replace.

• Use the buffered mode.

The following code section leads to a deadlock in your original application:
...
52 /* waiting for a message that has not been sent */
53 MPI_Recv(&recv, 1, MPI_CHAR, peer, 100, MPI_COMM_WORLD, &status);
54
55 /*
56 * Too late, this code is not going to be reached.
57 * Beware, simply moving this code up would rely on
58 * buffering in the MPI. The correct solution is to
59 * use MPI_Isend() before the receive and MPI_Wait()
60 * afterwards.
61 */
62 send = 0;
63 MPI_Send(&send, 1, MPI_CHAR, peer, 100, MPI_COMM_WORLD);
...

To resolve the deadlock for the given example, you need to replace the MPI_Recv and MPI_Send calls
with MPI_Sendrecv. Do the following:

1. Remove all lines from 52 to 61.

2. Replace the MPI_Recv function call (line 63) with the following MPI_Sendrecv call:

MPI_Sendrecv(&send, 1, MPI_CHAR, peer, 100, &recv, 1, MPI_CHAR, peer,
100, MPI_COMM_WORLD, &status);

3. Save this information into the file: MPI_Sendrecv.c.

4. Compile and run the modified application with the same parameters. The resulting output should
look as follows:

 ...
[0] INFO: Writing tracefile MPI_Sendrecv.stf in
/checking/global/deadlock/hard
[0] INFO: Error checking completed without finding any problems.

5. View the newly generated trace file with Intel® Trace Analyzer to make sure that the deadlock issue
has been resolved:

Detecting and Resolving Errors with MPI Correctness Checker

12

As shown in the figure above, the deadlock problem no longer occurs, and both ranks successfully
exchanged the messages.

13

3. Summary
You have completed the Detecting and Resolving Errors with MPI Correctness Checker tutorial. The
following is the summary of important things to remember when using this functionality to check your MPI
application for errors.

Step Tutorial Recap Key Tutorial Take-aways

Configuration options overview Reviewed the configuration
options that control the
correctness checking functionality.

You can configure the
correctness checking process
by adjusting the necessary
settings according to your
needs.

Resolving the data type mismatch
error

• Ran an application with the
data type mismatch error to
detect the cause.

• Used the correctness checker
messages to locate and
eliminate the problem.

You can use the correctness
checker command-line
messages to resolve the
reported problems.

Resolving the deadlock error • Ran an application with the
deadlock error and created its
trace file to detect the cause of
the problem.

• Used the correctness checker
messages and Intel® Trace
Analyzer Source View to locate
and eliminate the problem.

You can:

• Store source code
locations in trace file to
easily find problem
causes.

• View and analyze the
reported problems using
Intel® Trace Analyzer GUI.

	Tutorial: Detecting Errors with MPI Correctness Checker

	Contents
	Legal Information
	1. Overview
	1.1. Prerequisites
	1.1.1. Required Software
	1.1.2. Setting Up the Environment Variables

	2. Detecting and Resolving Errors
	2.1. Correctness Checker Configuration Options
	2.2. Instrumenting an Example with Data Type Mismatch
	2.3. Instrumenting an Example with a Deadlock
	2.3.1. Analyzing Source Code
	2.3.2. Resolving the Deadlock

	3. Summary

