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Legal Information 
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by 
this document. 

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of 
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising 
from course of performance, course of dealing, or usage in trade. 

This document contains information on products, services and/or processes in development. All 
information provided here is subject to change without notice. Contact your Intel representative to obtain 
the latest forecast, schedule, specifications and roadmaps. 

The products and services described may contain defects or errors known as errata which may cause 
deviations from published specifications. Current characterized errata are available on request. 

* Other names and brands may be claimed as the property of others. 

Intel, VTune, Xeon Phi and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other 
countries. 

© 2015 Intel Corporation. 

This product includes software developed by the University of California, Berkley and its contributors, and 
software derived from the Xerox Secure Hash Function. It includes software developed by the University of 
Tennessee, see appendix A for details. It also includes libraries developed and © by SGI and Michael Riepe. 
They are licensed under the GNU Lesser General Public License (LGPL) or Runtime General. 

Their source code can be downloaded from ftp://ftp.ikn.intel.com/pub/opensource. 
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1. Introduction 
Intel® Trace Collector is a tool for tracing MPI applications. It intercepts all MPI calls and generates 
tracefiles that can be analyzed with Intel® Trace Analyzer for understanding the application behavior. Intel® 
Trace Collector can also trace non-MPI applications, like socket communication in distributed applications 
or serial programs. The tool was formerly known as Vampirtrace* (VT), which is why the VT abbreviation is 
present in the names of some of components and variables. 

Before you start using any of the Intel Trace Collector functionality, make sure to set the necessary 
environment variables using the psxevars script available at 
<install_dir>/parallel_studio_xe_<version>.x.xxx/bin. On Linux* OS source the 
psxevars.[c]sh script, on Windows* OS run the psxevars.bat file. This will set the required 
environment variables for compilers, Intel® MPI Library and Intel® Trace Analyzer and Collector, and you 
will be ready to trace your applications. 

1.1. Product Components 
Intel® Trace Collector contains the libraries and utilities listed below. Some of them are available only on 
Linux* OS. 

Libraries 

Component Description 

libVTnull Dummy implementation of API (Tracing User Defined Events). 

libVT Library for regular MPI tracing (Tracing Conventional MPI Applications). 

libVTfs Library for fail-safe MPI tracing (Tracing Failing MPI Applications). 

libVTmc Correctness checking library (Correctness Checking). 

libVTcs Library for tracing distributed non-MPI applications (Tracing Distributed Non-MPI 
Applications). 

VT_sample Library for automatic counter tracing with PAPI (Recording Hardware Performance 
Information). 

Utilities 

Component Description 

stftool Utility for manipulation of trace files (STF Manipulation with stftool). 

xstftool/expandvtlog.pl Utility for conversion of trace files into readable format (Expanded ASCII 
output of STF Files). 

itcconfig Configuration assistant for creating and editing configuration files 
(Configuring Intel® Trace Collector). 

mps MPI Performance Snapshot tool for analyzing Intel® MPI Library internal 
statistics and statistics collected by the tool collector (-mps option for 
mpirun). See MPI Performance Snapshot User's Guide. 
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1.2. What's New 
This User and Reference Guide documents Intel® Trace Collector 9.1 Update 2. 

Intel® Trace Collector 9.1: 

• The document has been restructured into User Guide and Reference Manual. 

Intel® Trace Collector 9.0 Update 3: 

• Support for OpenMP* regions. See Recording OpenMP* Regions Information for details. 

Intel® Trace Collector 9.0: 

• Now MPI-3 standard is supported. 

• New -trace-collectives and -trace-pt2pt options are described in Filtering Trace Data. 

• Use the TIME-WINDOWS option to set up the time frame for trace collection. For more information, 
refer to TIME-WINDOWS. 

• Find the description of the new functions for I/O call profiling in the Profiling System Calls section. 

• See the updated workflow for recording hardware counters in the Recording Hardware 
Performance Information section. 

• Refer to the Initialization, Termination and Control section to find more descriptions of 
initialization function descriptions 

• Learn how to generate a trace file on an Intel® Xeon Phi™ coprocessor in Tracing MPI Applications 
on the Intel® Many Integrated Core Architecture. 

Intel® Trace Collector 8.1 Update 4: 

• This release contains minor improvements and bug-fixes. 

Intel® Trace Collector 8.1 Update 3: 

• The description of the dynamic linking via the LD_PRELOAD capability: Tracing Conventional MPI 
Applications. 

Intel® Trace Collector 8.1 Update 2: 

• This release contains minor improvements and bug-fixes. 

Intel® Trace Collector 8.1 Update 1: 

• Support for MPI-2.1 Standard. 

• Intel Trace Collector Reference Manual is reorganized: now it contains separate topics for each 
supported option: Configuration Options). 

1.3. About this Document 
This User and Reference Guide provides you with the description of the features of the Intel® Trace 
Collector. This information is provided in the two main sections: 

• User Guide – describes the Intel® Trace Collector functionality and provides instructions on how to 
use its features. 

• Intel® Trace Collector Reference – contains the reference information for Intel® Trace Collector. 

On Linux* OS, you can get help information in man pages, for example, about the Intel® Trace Collector API 
calls (man VT_enter) and the Intel Trace Collector configuration (man VT_CONFIG). The man pages are 
available in the <install_dir>/man directory. 

1.3.1. Notational Conventions 
The documentation is OS-independent. Linux* OS and Windows* OS may have different styles in passing 
parameters. This User and Reference Guide follows the nomenclature used on the Linux* OS. Here is a list 
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of the most important differences and how they are mapped from the Linux* OS style to the Windows* OS 
one: 

Linux* OS Microsoft* Windows* OS 

-L<path> -LIBPATH:<path> 

-l<library> <library>.lib 

<directory>/<file> <directory>\<file> 

The following conventions are used in this document: 

Convention Explanation Example 

This type style Document or product names The term process in this 
documentation implicitly includes 
thread. 

This type style GUI elements Click OK 

<this type style> Placeholders for actual values <new_name> 

This type style Commands, arguments, options $ mpirun -trace -n 4  myApp 

THIS_TYPE_STYLE Environment variables Set the VT_CONFIG environment 
variable to the directory that 
contains the configuration file. 

[ items ] Optional items [config options] 

[ item | item ] Selectable items separated by 
vertical bar(s) 

[on|off] 

$ Introduces UNIX* commands $ ls 

> Introduces Windows* commands > cd 

1.4. Related Information 
Additional information about Intel® Trace Collector for Linux* OS and Windows* OS related products are 
available at: http://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation/ 

Information about Intel® Parallel Studio XE Cluster Edition is available at: https://software.intel.com/en-
us/intel-parallel-studio-xe/ 

Intel® Premier Customer Support is available at: https://premier.intel.com/ 

Submit your feedback on the documentation at: 
http://www.intel.com/software/products/softwaredocs_feedback/ 

http://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation/
https://software.intel.com/en-us/intel-parallel-studio-xe/
https://software.intel.com/en-us/intel-parallel-studio-xe/
https://premier.intel.com/
http://www.intel.com/software/products/softwaredocs_feedback/
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2. User Guide 

2.1. Configuring Intel® Trace Collector 
Before you start using Intel® Trace Collector, you may want to customize various aspects of its operation 
and define filters for data tracing. It is achieved through setting up the appropriate configuration options. 

You can set up these options in three ways: 

• In a configuration file. 

• In the corresponding environment variables. 

• In the command line when running your application. 

For the list of options and their descriptions, see Configuration Options. 

2.1.1. Using Configuration File 
Intel® Trace Collector configuration file is a plain ASCII file that contains a number of directives in each line 
and has the .conf extension. 

For your convenience, Intel® Trace Analyzer and Collector provides a utility called Configuration Assistant 
intended for creating and editing configuration files. However, you can create the configuration file 
manually using a text editor. For examples and details on syntax, see Configuration Reference. 

To run the Configuration Assistant, enter the command: 
$ itcconfig <trace_file> [<configuration_file>] 

NOTE 
Configuration Assistant requires a trace file to be passed, therefore you should first trace your application 
without any settings to use the utility. 

If you do not specify the configuration file, the default settings will be used. Edit the file and save it with the 
.conf extension. 

To apply the settings, do the following: 

1. Set up the VT_CONFIG environment variable to point to the full path to your configuration file. For 
example: 

$ export VT_CONFIG=/<configuration_file_directory>/my_settings.conf 

2. Set up the VT_CONFIG_RANK environment variable to point to the process that reads and parses 
the configuration file (the default value is 0). 

3. Trace your application as described in Tracing MPI Applications. 

2.1.2. Using Environment Variables 
Each option has an equivalent environment variable. To set the variables, use the option names, but prefix 
them with VT_ and replace hyphens with underscores. For the SYMBOL, STATE and ACTIVITY options you 
can also list multiple values in one variable (see Filtering Trace Data for details). For example: 
$ export VT_STATE=* OFF MPI:* ON 

NOTE 
Environment variables are checked by the process that reads the configuration file after it has parsed the 
file, so the variables override the configuration file options. 
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2.1.3. Using Command-Line Options 
To specify configuration options in the command line, at runtime use a string of the following syntax as an 
argument to your application: 
--itc-args --<configuration_option> <value> --itc-args-end 

For example, to generate a trace file of the SINGLESTF format: 
$ mpirun -n 4 ./MyApp --itc-args --logfile-format SINGLESTF --itc-args-end 

NOTE 
Fortran programs are an exception, because Intel Trace Collector has limited access to command line 
parameters of Fortran programs. 

2.1.4. Protocol File 
After tracing your application, a protocol file .prot is created. The file lists all configuration options with 
their values used when your application was traced, and other useful information. You can use the protocol 
file of a particular run as a configuration file to trace the application with the same settings again. See 
Protocol File for details. 

See Also 
Configuration Reference 
Filtering Trace Data 
Configuration Assistant section in the Intel® Trace Analyzer User and Reference Guide 

2.2. Tracing MPI Applications 
Before tracing your applications, set up the environment variables for compilers, Intel® MPI Library and 
Intel® Trace Analyzer and Collector. 

Linux* OS: 

Source the psxevars.[c]sh script available at 
<install_dir>/parallel_studio_xe_<version>.x.xxx/bin, where the default <install_dir> 
is: opt/intel: 
$ source psxevars.sh 

Windows* OS: 

Set up the environment running the compiler command prompt: 

• Windows* 7: Go to Start > All Programs > Intel Parallel Studio XE version > Compiler and 
Performance Libraries > Command prompt with Intel Compilers and select the appropriate 
mode. 

• Windows* 8: Go to Start > Apps > Intel Parallel Studio XE version > Build Environment for arch 
Visual Studio mode, where arch is Intel 64 or IA-32. 

Alternatively, run the psxevars.bat script available at 
<install_dir>\parallel_studio_xe_<version>.x.xxx\bin. By default, <install_dir> is: 
C:\Program Files (x86)\IntelSWTools. 

After setting up the environment, you are ready to trace your applications. See the instructions below. 

2.2.1. Tracing Conventional MPI Applications 
Tracing on Linux* OS 

Applications Dynamically Linked with Intel® MPI Library 
To trace an application, use the -trace option of the mpirun command. For example: 
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$ mpirun -trace -n 4 ./myApp 

If you use your own launch scripts, you can use the LD_PRELOAD environment variable to point to the 
appropriate profiling library (see Product Components) and run the application. For example: 
$ export LD_PRELOAD=libVTfs.so 
$ mpirun -n 4 ./myApp 

Applications Statically Linked with Intel® MPI Library 
To trace an application, rebuild it with the -trace option and run it as usual. For example: 
$ mpiicc -static_mpi -trace myApp.c -o myApp 
$ mpirun -n 4 ./myApp 

NOTE 
The -trace option links the Intel® Trace Collector library statically. If you wish to link it dynamically, use 
the following flag sequence: -trace -dynamic_log. 

If you wish to specify the profiling library, use the -profile=<profiling_library> option instead of -
trace. For the list of available libraries, see Product Components. For example, for the fail-safe tracing 
library: 
$ mpiicc -static_mpi -profile=vtfs myApp.c -o myApp 

For more details on the options used, see the Intel® MPI Library documentation. 

Tracing on Windows* OS 
To trace an application, do the following: 

1. Rebuild your application with the -trace compiler option. For example: 

> mpiicc -trace myApp.c 

2. Run the application as usual: 

> mpiexec -n 4 myApp.exe 

After running your application, a tracefile with the .stf extension will be created. Open this tracefile in 
Intel® Trace Analyzer to analyze the application behavior. See the Intel® Trace Analyzer User and Reference 
Guide for details. 

2.2.2. Tracing Failing MPI Applications 
Normally, if an MPI application fails or is aborted, all the trace data collected is lost, because libVT needs 
a working MPI to write the trace file. However, the user might want to use the data collected up to that 
point. To solve this problem, Intel® Trace Collector and Analyzer provides the libVTfs library that enables 
tracing of failing MPI applications. 

Usage Instructions 
To trace failing MPI applications, do the following: 

Linux* OS 

Set the LD_PRELOAD environment variable to point to the libVTfs library and run the application. For 
example: 
$ export LD_PRELOAD=libVTfs.so 
$ mpirun -n 4 ./myApp 

Alternatively, rebuild your application with the static version of the library. For example: 
$ mpiicc -profile=vtfs myApp.c -o myApp 

Windows* OS 

Relink your application with the libVTfs library before the MPI library and run it as usual. To do this, you 
should create an Intel® MPI Library configuration file that points to the libVTfs library. You can do it as 
follows (administrator privileges may be required): 
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> echo SET PROFILE_PRELIB=%VT_ROOT%\lib\VTfs.lib > 
%I_MPI_ROOT%\intel64\lib\VTfs.conf 
> mpiicc -profile=VTfs myApp.c 
> mpiexec -n 4 myApp.exe 

How it Works 
Under normal circumstances tracing works like with libVT, but communication during trace file writing is 
done through TCP sockets, so it may take more time than over MPI. In order to establish communication, it 
needs to know the IP addresses of all the hosts involved. It finds them by looking up the hostname locally 
on each machine or, if that only yields the 127.0.0.1 local host IP address, falls back to broadcasting 
hostnames. In the latter case hostname lookup must work consistently in the cluster. In case of a failure, 
libVTfs freezes all MPI processes and then writes a trace file with all trace data. 

Possible Failures 

Failure Description 

Signals Includes events inside the application like segmentation faults and floating 
point errors, and also abort signals sent from outside, like SIGINT or SIGTERM. 

Only SIGKILL will abort the application without writing a trace because it 
cannot be caught. 

Premature Exit One or more processes exit without calling MPI_Finalize(). 

MPI Errors MPI detects certain errors itself, like communication problems or invalid 
parameters for MPI functions. 

Deadlocks If Intel® Trace Collector observes no progress for a certain amount of time in 
any process, it assumes that a deadlock has occurred, stops the application and 
writes a trace file. 

You can configure the timeout with DEADLOCK-TIMEOUT. "No progress" is 
defined as "inside the same MPI call". This is only a heuristic and may fail to 
lead to both false positives and false negatives. 

Undetected Deadlock If the application polls for a message that cannot arrive with MPI_Test() or a 
similar non-blocking function, Intel® Trace Collector still assumes that progress 
is made and does not stop the application. 

To avoid this, use blocking MPI calls in the application, which is also better for 
performance. 

Premature Abort If all processes remain in MPI for a long time due to a long data transfer for 
instance, then the timeout might be reached. Because the default timeout is 
five minutes, this is very unlikely. After writing the trace libVTfs will try to 
clean up the MPI application run by sending all processes in the same process 
group an INT signal. This is necessary because certain versions of MPICH* may 
have spawned child processes which keep running when an application aborts 
prematurely, but there is a certain risk that the invoking shell also receives this 
signal and also terminates. If that happens, then it helps to invoke mpirun 
inside a remote shell: 
rsh localhost 'sh -c "mpirun . . . "' 

MPI errors cannot be ignored by installing an error handler. libVTfs overrides 
all requests to install one and uses its own handler instead. This handler stops 
the application and writes a trace without trying to proceed, otherwise it would 
be impossible to guarantee that any trace will be written at all. 
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On Windows* OS, not all features of POSIX* signal handling are available. 
Therefore, VTfs on Windows* OS uses some heuristics and may not work as 
reliably as on Linux* OS. It is not possible to stop a Windows* application run 
and get a trace file by sending a signal or terminating the job in the Windows 
task manager. 

2.2.3. Tracing MPI Applications on the Intel® Many Integrated 
Core Architecture 

Intel® Trace Collector supports trace collection for MPI applications running on: 

• Intel® Many Integrated Core Architecture (Intel® MIC Architecture) 

• Intel® 64 architecture and on the Intel® MIC Architecture simultaneously 

To trace such applications, make sure to properly set up the Network File System (NFS) between the hosts 
and the coprocessors. See the Intel® Many Integrated Core Software Stack (MPSS) documentation on how 
to set up NFS on the coprocessors. 

Applications Running on an Intel® Xeon Phi™ Coprocessor 
To trace an MPI application running on an Intel® Xeon Phi™ coprocessor, use Intel® MPI Library, the Intel® 
Trace Collector libraries, and a compiler that can generate an executable file compatible with the targeted 
Intel® Many Integrated Core Architecture (Intel® MIC Architecture). Do the following: 

1. Source the mpivars.sh and itacvars.sh from the intel64/bin directories. 

2. Compile the application using the statically linked Intel Trace Collector libraries: 

host$ mpiicc -mmic -trace myApp.c -o myApp_mic 

where MyApp is the name of your application. 

3. Set environment variables for Intel MPI Library to understand that the application uses the Intel 
Xeon Phi coprocessors: 

host$ export I_MPI_MIC=enable 
host$ export I_MPI_MIC_POSTFIX=_mic 

4. Run the application with the following command: 

host$ mpirun -host host1-mic0 -n 4 ./myApp 

Running your application with this command, you do not have to add the _mic suffix to the name 
of your application, because it is added to the application name automatically. 

5. If everything is correct, you will get a message that a trace file has been written. 

Application Running on Host System and Intel® Xeon Phi™ Coprocessor 
Simultaneously 
To trace an application running on the host system and the Intel® Xeon Phi™ coprocessor simultaneously, 
compile one part for the host system and another part for the Intel Xeon Phi coprocessor: 

1. Source the mpivars.sh and itacvars.sh from the intel64/bin directories. 

2. Set the Intel® Trace Analyzer and Collector variables for the Intel® 64 architecture: 

host$ export I_MPI_MIC=enable 
host$ export I_MPI_MIC_POSTFIX=_mic 

3. Compile the application for the Intel® MIC Architecture: 

host$ mpiicc -mmic -trace myApp.c -o myApp_mic 

4. Compile the same application for the host: 

host$ mpiicc -trace myApp.c -o myApp 

5. Run the application: 
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host$ mpirun -f host_file -n 64 myApp 

Applications Not Linked to Intel® Trace Collector Library 
To trace an application not linked to the Intel® Trace Collector library, do the following: 

1. Source the mpivars.sh and itacvars.sh scripts from the intel64/bin directories. 

2. Set environment variables for Intel® MPI Library to understand that the application uses the Intel® 
Xeon Phi™ coprocessors: 

host$ export I_MPI_MIC=enable 
host$ export I_MPI_MIC_POSTFIX=_mic 

3. Run the application: 

host$ mpirun -trace -f host_file -n 64 myApp 

4. If rank 0 runs on the coprocessor, trace file name includes postfix. For example, myApp_mic.stf 

NOTE 
If your application requires a shared library, you may need to add the path to that library to the 
LD_LIBRARY_PATH variable. 

2.2.4. Tracing MPI File IO 
On Linux* OS, Intel® Trace Collector does not support tracing of ROMIO*, a portable implementation of 
MPI-IO. Fully standard-compliant implementations of MPI-IO are untested, but might work. 

This distinction is necessary because ROMIO normally uses its own request handles (MPIO_Request) for 
functions like MPI_File_iread() and expects the application to call MPIO_Wait()/MPIO_Test(). 
These two functions are supported if and only if Intel® Trace Collector is compiled with ROMIO support. In 
that case the wrapper functions for MPI_File_iread() are compiled for MPIO_Requests and might not 
work if the MPI and the application use the normal MPI-2 MPI_Request. 

Applications which avoid the non-blocking IO calls should work either way. 

2.2.5. Handling of Communicator Names 
By default, Intel® Trace Collector stores names for well-known communicators in the trace: COMM_WORLD, 
COMM_SELF_#0, COMM_SELF_#1 and so on. When new communicators are created, their names are 
composed of a prefix, a space and the name of the old communicator. For example, calling 
MPI_Comm_dup() on MPI_COMM_WORLD will lead to a communicator called DUP COMM_WORLD. 

There are the following prefixes for MPI functions: 

MPI Function Prefix 

MPI_Comm_create() CREATE 

MPI_Comm_dup() DUP 

MPI_Comm_split() SPLIT  

MPI_Cart_sub() CART_SUB 

MPI_Cart_create() CART_CREATE 

MPI_Graph_create() GRAPH_CREATE 

MPI_Intercomm_merge() MERGE 

MPI_Intercomm_merge() is special because the new communicator is derived from two communicators, 
not just one as in the other functions. The name of the new inter-communicator will be MERGE <old 
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name 1>/<old name 2> if the two existing names are different, otherwise it will be just MERGE <old 
name>. 

In addition to these automatically generated names, Intel® Trace Collector also intercepts 
MPI_Comm_set_name() and then uses the name provided by the application. Only the last name set with 
this function is stored in the trace for each communicator. Derived communicators always use the name 
that is currently set in the old communicator when the new communicator is created. 

Intel® Trace Collector does not attempt to synchronize the names set for the same communicator in 
different processes, therefore the application has to set the same name in all processes to ensure that this 
name is really used by Intel® Trace Collector. 

2.3. Tracing User Defined Events 
If you wish to get more detailed information about your application, you can instrument and trace various 
user-defined events in your application, including non-MPI function calls. In practice, it is often useful to 
record entries and exits to/from functions or code regions within larger functions. 

Use the following Intel® Trace Collector capabilities: 

• Automatic function instrumentation with the compiler 

• Manual source code instrumentation with Intel® Trace Collector API 

2.3.1. Automatic Function Instrumentation 
Using Intel® Compilers 
Intel® compilers can automatically instrument all user functions during compilation. At runtime, Intel® 
Trace Collector will record all function entries and exits in those compilation units. 

To enable the instrumentation, use the option -tcollect (Linux* OS) or /Qtcollect (Windows* OS) 
during compilation. For example: 
$ mpiicc -tcollect -trace myapp.c 

The option accepts an argument to specify the collecting library to link against (see Product Components). 
For example, for fail-safe tracing select libVTfs as follows: -tcollect=VTfs (VT by default). 

To define a particular set of functions to be instrumented, use the -tcollect-filter <file> option. 
<file> contains a list of functions followed by on|off switcher: 
func1 on 
func2 off 

If a function is marked off, it will not be instrumented. 

Using GCC* 
Similar function tracing is available in the GNU Compiler Collection (gcc*). Object files that contain 
functions for tracing are compiled with -finstrument-functions, for example: 
$ mpicc -finstrument-functions -trace myapp.c 

Intel® Trace Collector should be able to obtain output about functions in the executable. By default, this is 
done by starting the shell program nm -P, which can be changed with the NMCMD configuration option. See 
NMCMD. 

Folding 
Function tracing can generate large amounts of trace data. Use folding to disable tracing of calls within 
certain functions. It enables you to reduce the trace file size and get information only about events of 
interest. See Tracing Library Calls for details. 



User Guide 

15 

C++ Name Demangling 
By default Intel® Trace Collector records function names in their mangled form. The DEMANGLE 
configuration option enables automatic demangling of C++ names. See DEMANGLE. 

2.3.2. Manual Source Code Instrumentation 
Intel® Trace Collector provides the API that enables you to control the profiling library and trace user-
defined functions, define groups of processes, define performance counters and record their values. All 
API functions, parameters and macros are declared in the header files VT.h and VT.inc for C/C++ and 
Fortran, respectively. Include the appropriate header file in your source code when using the Intel® Trace 
Collector API functions. 

Refer to the Intel® Trace Collector API section for detailed description and usage information on the Intel® 
Trace Collector API. 

To compile an application with calls to the Intel® Trace Collector API, pass the header files to the compiler 
using the -I option. For example: -I$VT_ROOT/include. 

Using the Dummy Libraries 
If you wish to temporarily disable tracing for the application with calls to the Intel® Trace Collector API, you 
can use the dummy library libVTnull available in the libraries folder. This way you will not have to 
remove the API function calls from the source code to run your application without tracing. For 
instructions on linking, see Tracing Conventional MPI Applications. 

2.4. Filtering Trace Data 
Filtering in Intel® Trace Collector will apply specified filters to the trace collection process. This directly 
reduces the amount of data collected. The filter rules can be defined in a configuration file, in the 
environment variables or as command line arguments (see Configuring Intel® Trace Collector for details). 
Filters are evaluated in the order they are listed, and all matching is case-insensitive. For filtering by 
collective and point-to-point MPI operations the corresponding mpirun/mpiexec options are also 
available. 

In the following discussion, items within angle brackets (< and >) are placeholders for actual values, 
optional items are put within square brackets ([ and ]), and alternatives are separated by a vertical bar |. 

2.4.1. Filtering by Collective and P2P Operations 
Use the following mpirun/mpiexec options at runtime: 

• -trace-collectives – to collect information only about collective operations 

• -trace-pt2pt – to collect information only about point-to-point operations 

An example command line for tracing collective operations may looks as follows: 
$ mpirun -trace -n 4 -trace-collectives ./myApp 

2.4.2. Filtering by Specific Functions 
Basic Function Filtering 
Function filtering is accomplished by defining the STATE, SYMBOL and ACTIVITY options. Each option 
accepts the pattern matching the filtered function, and the filtering rule. The formal definition is as follows: 
STATE|SYMBOL|ACTIVITY <PATTERN> <RULE> 

The general option is STATE, while SYMBOL and ACTIVITY are its replacers: 

• SYMBOL filters functions by their names, regardless of the class. The following definitions will be 
equal: 

SYMBOL <PATTERN> <RULE> 
STATE **:<PATTERN> <RULE> 
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• ACTIVITY filters functions by their class names. The following definitions will be equal: 

ACTIVITY <PATTERN> <RULE> 
STATE <PATTERN>:* <RULE> 

• STATE can filter functions both by names and their class names. 

Pattern should match the name of the function for filtering. You can use the following wildcards: 

Wildcard Description 

* Any number of characters, excluding ":" 

** Any number of characters, including ":" 

? A single character 

[ ] A list of characters 

For example the following definition will filter out all functions containing the word send, regardless of the 
class: 
STATE **send* OFF 

The basic filter rule should contain one of the following entries: 
<RULE> = ON | OFF | <trace level> | <skip level>:<trace level>  

The <trace level> value defines how far up the call stack will be traced. The <skip level> value 
defines how many levels to skip while going up the call stack. This is useful if a function is called within a 
library, and the library stack can be ignored. Specifying ON will turn on tracing with a <trace level> of 1 
and a <skip level> of 0, and OFF will turn off tracing completely (this is NOT equivalent to 0:0). 

Example 
In the example below the following events will be traced: all functions in the class Application, all MPI 
send functions except MPI_Bsend(), and all receive, test and wait functions. All other MPI functions 
will not be traced. 
# disable all MPI functions 
ACTIVITY MPI OFF 
# enable all send functions in MPI 
STATE MPI:*send ON 
# except MPI_Bsend 
SYMBOL MPI_bsend OFF 
# enable receive functions 
SYMBOL MPI_recv ON 
# and all test functions 
SYMBOL MPI_test* ON 
# and all wait functions, tracing four call levels 
SYMBOL MPI_wait* 4 
# enable all functions within the Application class 
ACTIVITY Application 0 

Advanced Function Filtering 
For function filtering a finer control is also available. Here is a list of additional filter rule entries, which can 
be used along with the basic rule in any combination: 
<ENTRYTRIGGER> | <EXITTRIGGER> | <COUNTERSTATE> | <FOLDING> | <CALLER> 

Here is the specification for each filter entry available: 

Entry/Exit Trigger 
<ENTRYTRIGGER> = entry <TRIGGER> 
<EXITTRIGGER> = exit <TRIGGER> 

Activate a trigger on entry/exit for the matching pattern. 
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<TRIGGER> = [<TRIPLET>] <ACTION> [<ACTION>] 

Triggers define a set of actions over a set of processes (triplets, see Filtering by Ranks below for definition). 
<ACTION> = traceon | traceoff | restore | none | begin_scope <SCOPE_NAME> | 
end_scope <SCOPE_NAME> 

The action defines what happens to tracing. Using traceon or traceoff will turn tracing on or off 
respectively. begin_scope and end_scope will start or end the named scope. 
<SCOPE_NAME> = [<class name as string>:]<scope name as string> 

A scope is a user-defined region in the program. See Defining and Recording Scopes. 

Counter State 
<COUNTERSTATE> = counteron | counteroff 

Counter state turns on or off sampling for the matching pattern. By default all enabled counters are 
sampled at every state change. There is no method for controlling which counters are sampled. 

Folding 
<FOLDING> = fold | unfold 

Enabling folding for a function will disable tracing of any functions called by that function. By default, all 
functions are unfolded. 

Caller 
<CALLER> = caller <PATTERN> 

Specifying the caller enables tracing only for functions called by the functions matching the pattern. 

For details on use of the FOLDING and CALLER keywords, see Tracing Library Calls. 

2.4.3. Filtering by Ranks 
Besides filtering by functions, you can also filter the trace data by ranks in MPI_COMM_WORLD using the 
PROCESS configuration option. Its value is a comma separated list of Fortran 90-style triplets. The formal 
definition is as follows: 
PROCESS <TRIPLET>[,<TRIPLET>,...] on | off 

Triplet definition is as follows: 
<TRIPLET> = <LOWER-BOUND>[:<UPPER-BOUND>[:<INCREMENT>] ] 

The default value for <UPPER-BOUND> is the size of MPI_COMM_WORLD (N) and the default value for 
<INCREMENT> is 1. 

For example, to trace only even ranks and rank 1 use the following triplets: 0:N:2,1:1:1, where N is the 
total number of processes. All processes are enabled by default, so you have to disable all of them first 
(PROCESS 0:N OFF) before enabling a certain subset again. For SMP clusters, you can also use the 
CLUSTER option to filter for particular SMP nodes. 

2.5. Recording OpenMP* Regions Information 
Intel® Trace Collector can record information about OpenMP* regions in your application into trace file. 

To collect this information, make sure to do the following: 

Linux* OS 

1. Your application should be: 

• linked with the Intel implementation of OpenMP. See User and Reference Guide for the 
Intel® C++ Compiler for details. 

• dynamically linked with Intel® MPI Library. 

2. Use the -trace option of mpirun to trace the data. 
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NOTE 
Using the LD_PRELOAD environment variable to trace data will not have the desired effect. 

Windows* OS 

1. Your application should be: 

• linked with the Intel implementation of OpenMP. 

• dynamically linked with the VT.dll library and Intel MPI Library. 

The example command line to compile the application may look as follows: 

> mpiicc -trace -openmp myapp.c 

2. Make sure the INTEL_LIBITTNOTIFY64 environment variable contains the full path to the 
VT.dll library. 

3. Run your application using the mpiexec command to trace the data. 

See Also 
Tracing Conventional MPI Applications 

2.6. Tracing System Calls (Linux* OS) 
On Linux* OS use this capability to track I/O calls. 

By default, system call profiling is disabled. To collect system calls, set the following configuration option 
(see Configuring Intel® Trace Collector for details): 
ACTIVITY SYSTEM ON 

To enable collection of an exact function add the following line into a configuration file: 
STATE SYSTEM:<func_name> ON 

NOTE 
Intel® Trace Collector does not collect any information on the amount of data saved or read during these 
operations. 

The following functions are supported: 

access clearerr close creat 

dup dup2 fclose fdopen 

feof ferror fflush fgetc 

fgetpos fgets fileno fopen 

fprintf fputc fputs fread 

freopen fseek fsetpos ftell 

fwrite getc getchar gets 

lseek lseek64 mkfifo perror 

pipe poll printf putc 

putchar puts read readv 
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remove rename rewind setbuf 

setvbuf sprintf sync tmpfile 

tmpnam umask ungetc vfprintf 

vprintf vsprintf write writev 

See Also 
Configuring Intel® Trace Collector 
ACTIVITY 
STATE 

2.7. Collecting Lightweight Statistics 
Intel® Trace Collector can gather and store statistics about the function calls and their communication. 
These statistics are gathered even if no trace data is collected, so it is a good starting point for trying to 
understand an unknown application that might produce an unmanageable trace. 

2.7.1. Usage Instructions 
To collect this light-weight statistics for your application, set the following environment variables before 
tracing: 
$ export VT_STATISTICS=ON 
$ export VT_PROCESS=OFF 

Alternatively, set the VT_CONFIG environment variable to point to the configuration file: 
# Enable statistics gathering 
STATISTICS ON 
# Do not gather trace data 
PROCESS 0:N OFF 
$ export VT_CONFIG=<configuration_file_path>/config.conf 

The statistics is written into the *.stf file. Use the stftool to convert the data to the ASCII text with --
print-statistics. For example: 
$ stftool tracefile.stf --print-statistics 

TIP 
The resulting output has easy-to-process format, so you can use text processing programs and scripts 
such as awk*, perl*, and Microsoft Excel* for better readability. A perl script convert-stats with this 
capability is provided in the examples folder. 

2.7.2. Output Format 
Each line contains the following information: 

• Thread or process 

• Function ID 

• Receiver (if applicable) 

• Message size (if applicable) 

• Number of involved processes (if applicable) 

And the following statistics: 

• Count – number of communications or number of calls as applicable 

• Minimum execution time excluding callee times 
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• Maximum execution time excluding callee times 

• Total execution time excluding callee times 

• Minimum execution time including callee times 

• Maximum execution time including callee times 

• Total execution time including callee times 

Within each line the fields are separated by colons. 

Receiver is set to 0xffffffff for file operations and to 0xfffffffe for collective operations. If message 
size equals 0xffffffff the only defined value is 0xfffffffe to mark it as a collective operation. 

The message size is the number of bytes sent or received per single message. With collective operations 
the following values (buckets of message size) are used for individual instances: 

Value Process-local bucket 
Is the same value on all 
processes? 

MPI_Barrier 0 Yes 

MPI_Bcast Broadcast bytes Yes 

MPI_Gather Bytes sent Yes 

MPI_Gatherv Bytes sent No 

MPI_Scatter Bytes received Yes 

MPI_Scatterv Bytes received No 

MPI_Allgather Bytes sent + received Yes 

MPI_Allgatherv Bytes sent + received No 

MPI_Alltoall Bytes sent + received Yes 

MPI_Alltoallv Bytes sent + received No 

MPI_Reduce Bytes sent Yes 

MPI_Allreduce Bytes sent + received Yes 

MPI_Reduce_Scatter Bytes sent + received Yes 

MPI_Scan Bytes sent + received Yes 

Message is set to 0xffffffff if no message was sent, for example, for non-MPI functions or functions 
like MPI_Comm_rank. 

If more than one communication event (message or collective operation) occur in the same function call 
(for example in MPI_Waitall, MPI_Waitany, MPI_Testsome, MPI_Sendrecv etc.), the time in that 
function is evenly distributed over all communications and counted once for each message or collective 
operation. Therefore, it is impossible to compute a correct traditional function profile from the data 
referring to such function instances (for example, those that are involved in more than one message per 
actual function call). Only the Total execution time including callee times and the Total execution time 
excluding callee times can be interpreted similar to the traditional function profile in all cases. 
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The number of involved processes is negative for received messages. If messages were received from a 
different process/thread it is -2. 

Statistics are gathered on the thread level for all MPI functions, and for all functions instrumented through 
the API or compiler instrumentation. 

See Also 
Tracing User Defined Events 
Using stftool 
Intel® Trace Collector API 

2.8. Recording Source Location Information 
Intel® Trace Collector can automatically record locations of function calls in the source code. To record this 
information, do the following: 

1. Compile the relevant application modules with support for debug information by using the -g 
(Linux* OS) and /Zi or /Z7 (Windows* OS) compiler flags. For example: 

$ mpiicc -g -c ctest.c 

2. Enable Program Counter (PC) tracing by setting the environment variable VT_PCTRACE to 5 for 
example: 

$ export VT_PCTRACE=5 

Alternatively, set the VT_CONFIG variable to the configuration file specifying the following, for 
example: 

# trace 4 call levels whenever MPI is used 
ACTIVITY MPI 4 
# trace one call level in all functions not specified 
# explicitly; can also be for example, PCTRACE 5 
PCTRACE ON 

  

$ export VT_CONFIG=<config_file> 

3. Trace your application as described in Tracing MPI Applications. 

PCTRACE sets the number of call levels for all functions. To avoid performance issues, PCTRACE is disabled 
by default and should be handled carefully. It is useful to get the initial understanding of the application 
before recording the source location information. 

Manual instrumentation of the source code with the Intel® Trace Collector API can provide similar 
information but without performance overhead. See Defining and Recording Source Locations for details. 

Pay attention that the compiler has to use normal stack frames. This is the default in GCC, but may be 
disabled with -fomit-frame-pointer. If the flag is used, then only the direct caller of MPI or API 
functions can be found, and asking Intel® Trace Collector to unwind more than one stack level may lead to 
crashes. 

The Intel® compilers do not use normal stack frames by default if optimization is enabled, but they can be 
enabled with with -fno-omit-frame-pointer. 

See Also 
Configuring Intel® Trace Collector 
PCTRACE 
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2.9. Recording Hardware Performance Information 
(Linux* OS) 
On Linux* OS Intel® Trace Collector can sample hardware counters with the Performance Application 
Programming Interface (PAPI). Because PAPI might not be available on a system, support for it is provided 
as an additional layer on top of the normal Intel® Trace Collector. 

This layer is implemented in the VT_sample.c source file. It is a sample file that traces counters available 
through PAPI High level API. 

To record hardware counters, do the following: 

1. Adjust the VT_sample.c sample with the necessary counters 

2. Rebuild the libVTsample.so file: 

1. Copy the contents of <isntall-dir>/slib directory into your working directory. 

2. Edit the provided Makefile to match the local setup. 

3. Build the file using the  make command. 

3. Set the LD_LIBRARY_PATH environment variable as follows: 

$ export LD_LIBRARY_PATH=<path_to_libVTsample>:<path_to_PAPI> 

4. Add libVTsample.so to the link line in front of the Intel® Trace Collector library. The link line will 
look as follows: 

$ mpiicc ctest.c -L$VT_SLIB_DIR –L. -L$PAPI_ROOT -lVTsample -lVT -lpapi 
$VT_ADD_LIBS -o ctest 

To view the counters in Intel® Trace Analyzer, use Counter Timeline. 

2.10. Recording Operating System Counters 
Similar to recording of process specific counters, Intel® Trace Collector can record operating system 
counters, which provide information about a node. In contrast to the process specific counters, OS 
counters are sampled very infrequently by one background thread per node and thus the overhead is very 
low. The amount of trace data also increases insignificantly. 

By default, recording of OS counters is disabled. To enable it, set the configuration option: 
COUNTER <counter_name> ON 

Supported Counters 

Counter Name Unit Comment 

disk_io KB/s Read/write disk IO (any disk in the node). 

net_io KB/s Read/write network IO (any system interface). This might not include 
the MPI transport layer. 

cpu_idle percent Average percentage of CPU time of all CPUs spent in idle mode. 

cpu_sys percent Average percentage of CPU time of all CPUs spent in system code. 

cpu_usr percent Average percentage of CPU time of all CPUs spent in user code. 

You can change the delay between recording the current counter values with the configuration option OS-
COUNTER-DELAY (by default, 1 second). CPU utilization is calculated by the OS with sampling, therefore a 
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smaller value does not necessarily provide more detailed information. Increasing it could reduce the 
overhead further, but only slightly because the overhead is hardly measurable already. 

These OS counters appear in the trace as normal counters which apply to all processes running on a node. 
To view the counters in Intel® Trace Analyzer, use Counter Timeline. 

See Also 
Configuring Intel® Trace Collector 
COUNTER 
OS-COUNTER-DELAY 

2.11. Tracing Library Calls 
If you have an application that makes heavy use of libraries or software components developed 
independently, you may want to exclude the information not related directly to your application from the 
trace data. At the same time, the library developer might want to do the opposite – trace only data related 
to their library. 

Intel® Trace Collector provides a capability to turn off tracing for functions at a certain call stack level, that 
is to fold them. If you want to trace calls within the folded functions, you can unfold them. 

To enable folding, use the FOLD and UNFOLD keywords for the STATE, SYMBOL or ACTIVITY configuration 
options to select functions for folding by their name (SYMBOL), class (ACTIVITY) or both (STATE). Use the 
CALLER keyword to specify the function caller. See Filtering Trace Data for details on syntax. 

NOTE 
To enable Intel® Trace Collector to profile non-MPI functions, make sure to instrument them using the 
compiler instrumentation or API. See Tracing User Defined Events. 

Below are examples of folding for the application with four additional libraries. 

General Structure of an Application Using Multiple Libraries 

 
From the figure above, the following information may be of interest for the application and the library 
developers: 

Application developer 
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• lib1, lib2, lib4 are called by the application. The application developer codes these calls and 
can change the sequence and parameters to them to improve performance (arrows "1"). 

• lib3 is never called directly by the application. The application developer has no way to tailor the 
use of lib3, therefore these calls (arrows "3") are of no interest to him. 

• lib4 is called both directly by the application, and indirectly through lib2. Only the direct use of 
lib4 can be influenced by the application developer, therefore is of interest to them. 

Library developer 

The lib2 developer will need information about the calls from the application, to component libraries 
(lib3 and lib4), and to system-level services (MPI). They will have no interest in performance data for 
lib1. The lib1 developer will have no interest in data from lib2, lib3, and lib4. 

2.11.1. Examples 
In this section folding is illustrated by giving configurations that apply to the example above. The C 
program available at examples/libraries.c reproduces the same pattern. Its call tree looks as follows 
(calls are aggregated and sorted by name, therefore the order is not sequential): 

 
By using the configuration options listed below, different parties can run the same executable to get 
different traces: 

Application developer: Trace the application only with the top-level calls in lib1, lib2, and lib4. 

Configuration file: examples/run_splibraries_app.conf 
STATE lib*:* FOLD 
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Call tree: 

 
lib2 developer: Trace only calls in lib2, including its top-level calls 

Configuration file: examples/run_splibraries_lib2.conf 

Call tree: 

 
lib2 Developer, detailed view: Trace the top-level calls to lib2 and all lib2, lib3, lib4 and system 
services invoked by them 

Configuration file: examples/run_splibraries_lib2detail.conf 
STATE Application:* FOLD 
STATE lib2:* UNFOLD 

Call tree: 

 
Application and lib4 Developers: Trace the calls in lib4 only made by the application 

Configuration file: examples/run_splibraries_lib4.conf 
STATE *:* FOLD 
STATE lib4:* UNFOLD CALLER Application:* 
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Call tree: 

 
It is assumed that the application, library and system calls are instrumented in the way that their classes 
are different. Alternatively, you can match against the function name prefix that is shared by all library calls 
in the same library. 

2.12. Correctness Checking 
Intel® Trace Collector provides the correctness checking functionality, which addresses two different 
concerns: 

• Finding programming mistakes in the application. It includes potential portability problems and 
violations of the MPI standard which do not immediately cause problems, but might when 
switching to different hardware or a different MPI implementation. In this case correctness 
checking is most likely done interactively on a smaller development cluster, but it might also be 
included in automated regression testing. 

• Detecting errors in the execution environment. This case should use the hardware and software 
stack on the system that is to be checked. 

While doing correctness checking, you should distinguish error detection which is done automatically by 
tools, and error analysis which is done by the user to determine the root cause of an error and eventually 
fix it. 

The error detection in Intel® Trace Collector is implemented in the libVTmc library, which performs error 
detection at runtime. To cover both of the scenarios above, recording of error reports for later analysis, 
and interactive debugging at runtime are supported. 

The errors are printed to stderr as soon as they are found. Interactive debugging is done with the help of 
a traditional debugger: if the application is already running under debugger control, then the debugger has 
the possibility to stop a process when an error is found. It is necessary to manually set a breakpoint in the 
function MessageCheckingBreakpoint(). This function and debug information about it are contained 
in the Intel® Trace Collector library. Therefore it is possible to set the breakpoint and after a process was 
stopped, to inspect the parameters of the function which describe which error has occurred. 

See the following topics on the usage of correctness checking: 

• Correctness Checking of MPI Applications 

• Running with Valgrind* 

• Configuration 

• Analyzing the Results 

• Debugger Integration 

2.12.1. Correctness Checking of MPI Applications 
By default, the libVTmc library does not write a tracefile. To perform correctness checking of an MPI 
application, enable trace collection and link your application with the libVTmc library. Do the following: 

Linux* OS 
1. Switch the CHECK-TRACING configuration option to on to enable Intel® Trace Collector to record 

the correctness checking reports to the tracefile. For example: 
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$ export VT_CHECK_TRACING=on 

2. Run your application with the -check_mpi option of mpirun. For example: 

$ mpirun -check_mpi -n 4 ./myApp 

Windows* OS 
1. Relink your application with the libVTmc library using the -check_mpi compiler option. For 

example: 

> mpiicc -check_mpi myApp.c 

2. Run your application with the CHECK-TRACING configuration option enabled. For example: 

> mpiexec -n 4 myApp.exe --itc-args --check-tracing ON --itc-args-end 

Use Intel® Trace Analyzer to view correctness checking events. 

See Also 
CHECK-TRACING 

2.12.2. Running with Valgrind* (Linux* OS) 
For distributed memory checking (LOCAL:MEMORY:INITIALIZATION) and detecting illegal accesses to 
memory owned by MPI (LOCAL:MEMORY:ILLEGAL_ACCESS) it is necessary to run all MPI processes under 
control of the Valgrind* memory checker (version 3.2.0 or higher). See http://www.valgrind.org/ for more 
information. 

To run Valgrind, invoke it directly on the main MPI process and add the mpirun -l option. This way all 
output printed by Valgrind is automatically prefixed with the MPI process rank. Intel® Trace Collector 
detects that -l is in effect and then leaves adding the rank prefix to mpirun also for Intel® Trace Collector 
output. 

The LOCAL:MEMORY:ILLEGAL_ACCESS check causes Valgrind reports not only for illegal application 
accesses (as desired) but also for Intel® MPI Library own access to the locked memory (not desired, 
because MPI currently owns it and must read or write it). These reports are normal and the Valgrind 
suppression file in Intel® Trace Collector lib folder tells Valgrind to not print them, but Valgrind must be 
notified about it through its --suppressions option. 

When the MPI executable is given on the command line, an MPI application could be started under 
Valgrind like this: 
$ mpirun -check_mpi -l -n <num procs> 
$ valgrind --suppressions=$VT_LIB_DIR/impi.supp <application>  
... 

When a wrapper script is used, then it might be possible to trace through the wrapper script by adding the 
--trace-children=yes option, but that could lead to reports about the script interpreter and other 
programs, so adding Valgrind to the actual invocation of the MPI binary is easier. 

2.12.3. Configuration 
You can configure manually which errors are checked: all errors have a unique name and are categorized in 
a hierarchy similar to functions. For example, LOCAL:MEMORY:OVERLAP is a local check which ensures that 
memory is not used twice in concurrent MPI operations. By disabling certain errors you can skip a report 
about it and reduce the checking overhead. 

Use the configuration options listed below. For instructions on how to set them, see Configuring Intel® 
Trace Collector. 

CHECK 
Use the CHECK configuration option to match against the names of supported errors and turn it on or off, 
as in the example below. See Correctness Checking Errors for the list of all errors. 
# Turn all checking off: 
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# ** matches colons 
# * does not 
CHECK ** OFF 
# Selectively turn on specific checks: 
# - All local checks 
CHECK LOCAL:** ON 
# - Only one global check 
CHECK GLOBAL:MSG:DATATYPE:MISMATCH ON 

PCTRACE 
By default, Intel® Trace Collector checks for all errors and tries to provide as much information about them 
as possible. In particular it does stack unwinding and reports source code information for each level in the 
call hierarchy. This can be controlled with the PCTRACE configuration option. For performance analysis 
that option is off by default, but for correctness checking with libVTmc it is enabled. 

DEADLOCK-TIMEOUT 
This option controls the same mechanism to detect deadlocks as in libVTfs. For interactive use it is 
recommended to set it to a small value like 10s to detect deadlocks quickly without having to wait long for 
the timeout. 

DEADLOCK-WARNING 
Displays a GLOBAL:DEADLOCK:NO_PROGRESS warning if the time spent by MPI processes in their last MPI 
call exceeds the threshold specified with this option. This warning indicates a load imbalance or a deadlock 
that cannot be detected, which may occur when at least one process polls for progress instead of blocking 
inside an MPI call. 

VERBOSE 
Different levels of verbosity specified with this option have the following effects: 

Level Effect 

0 All extra output disabled, only error summary at the end is printed. 

1 Adds a summary of configuration options as the application starts (default). 

2 Adds a one-line info message at the beginning by each process with host name, process ID and 
the normal rank prefix. This can be useful if output is redirected into one file per process, 
because it identifies to which process in the parallel application the output belongs. 

3 Adds internal progress messages and a dump of MPI call entry/exit with their parameters and 
results. 

See Also 
CHECK 
PCTRACE  
DEADLOCK-TIMEOUT 
DEADLOCK-WARNING 
VERBOSE 

2.12.4. Analyzing the Results 
For interactive debugging, you should start the application so that stderr is printed to a console window. 
Then you can follow which errors are found while the application is running and start analyzing them 
without having to wait for it to complete. If critical errors are found early, you can abort the run, fix the 
problem and restart. This ensures a much faster code and test cycle than a post-mortem analysis. 
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The output for each error varies, depending on the error: only the relevant information is printed, thus 
avoiding the need to manually skip over irrelevant information. In general, Intel® Trace Collector starts with 
the error name and then continues with a description of the failure. 

For each MPI call involved in the error the MPI parameters are dumped. If PC tracing is enabled (see 
PCTRACE), Intel® Trace Collector also provides a backtrace of source code locations for each call. For 
entities like requests, the involved calls include the places where a request was created or activated. This 
helps to track down errors where the problem is not at the place where it is detected. 

Because multiple processes might print errors concurrently, each line is prefixed with a tag that includes 
the rank of the process in MPI_COMM_WORLD which reports the problem. MPI applications which use 
process spawning or attachment are not supported, therefore that rank is unique. 

When the application terminates, Intel® Trace Collector does further error checks (for example, unfree 
resources, pending messages). 

NOTE 
If any process is killed without giving it a chance to clean up (that is, by sending it a SIGKILL), this final 
step is not possible. 

NOTE 
Sending a SIGINT to mpiexec through kill or pressing CTRL-C will cause Intel® MPI Library to abort all 
processes with such a hard SIGKILL. 

2.12.5. Debugger Integration 
It is necessary to manually set a breakpoint in the function MessageCheckingBreakpoint(). 
Immediately after reporting an error on stderr this function is called, so the stack backtrace directly leads 
to the source code location of the MPI call where the error was detected. In addition to the printed error 
report, you can also look at the parameters of the MessageCheckingBreakpoint() which contain the 
same information. It is also possible to look at the actual MPI parameters with the debugger because the 
initial layer of MPI wrappers in libVTmc is always compiled with debug information. This can be useful if 
the application itself lacks debug information or calls MPI with a complex expression or function call as 
parameter for which the result is not immediately obvious. 

The exact methods to set breakpoints depend on the debugger used. Here is some information how it 
works with specific debuggers. For additional information or other debuggers please refer to the debugger 
documentation. 

The first two debuggers mentioned below can be started by Intel® MPI Library by adding the -tv and -gdb 
options to the command line of mpirun. Allinea Distributed Debugging Tool* can be reconfigured to 
attach to MPI jobs that it starts. 

Using debuggers like that and Valgrind* are mutually exclusive because the debuggers would try to debug 
Valgrind, not the actual application. The Valgrind --db-attach option does not work out-of-the-box 
either because each process would try to read from the terminal. One solution that is known to work on 
some systems for analyzing at least Valgrind reports is to start each process in its own X terminal: 
$ mpirun -check_mpi -l -n <numprocs> xterm -e bash -c 'valgrind --db-attach=yes 
--suppressions=$VT_LIB_DIR/impi.supp <app>; echo press return; read' 

In that case the Intel® Trace Collector error handling still occurs outside the debugger, so those errors have 
to be analyzed based on the printed reports. 

TotalView* Debugger 
For TotalView* Debugger, it is necessary to pay attention that the breakpoint should be set for all 
processes. There are several ways to automate procedure of setting breakpoints. Mostly it depends on 
how commonly it is planned to use this automation. 
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If it is planned to apply it only for the current program, you can create the file filename.tvd (file name 
being the name of the executable) in the working directory in advance and put the following line into it: 
dfocus gW2 dbreak MessageCheckingBreakpoint 

Alternatively, you can set the breakpoint in the TotalView* GUI and save breakpoints, which will also create 
this file and then reuse the settings for further debug sessions with the same executable. 

To apply setting this breakpoint for all programs in current working directory, create a file .tvdrc with the 
following lines (or add them if it already exists): 
proc my_callback {_id} { 
   if { $_id == 2 } { 
      dfocus p$_id dbreak MessageCheckingBreakpoint 
   } 
   if { $_id > 2 } { 
      dfocus p$_id denable -a 
   } 
} 
dset TV::process_load_callbacks ::my_callback 

To apply this for all debugging sessions, add these lines to the following file $HOME/.totalview/tvdrc. 

Run your MPI application as follows: 
$ mpirun -check_mpi -tv -n <numprocs> <app> 

See Also 
TotalVeiw* Debugger Product Page 

GNU* Symbolic Debugger 
To automate the procedure of setting breakpoints, GNU* Symbolic Debugger (GDB) supports executing 
commands automatically. To apply setting this breakpoint for all programs in the current working 
directory, you can create a file .gdbinit with the following lines (or add them if it already exists): 
set breakpoint pending on 
break MessageCheckingBreakpoint 

Due to the order in which files are processed, placing the same commands in a .gdbinit file in the home 
directory does not work because the main binary is not loaded yet. As a workaround, you can put the 
following commands into ~/.gdbinit: 
define hook-run 
# important, output is expected by MPI startup helper 
echo Starting program... 
# allow pending breakpoint 
set breakpoint pending on 
# set breakpoint now or as soon as function becomes available 
break MessageCheckingBreakpoint 
# restore default behavior 
set breakpoint pending auto 
end 

Then start your MPI application as follows: 
$ mpirun -check_mpi -gdb -n <numprocs> <app> 

Allinea* Distributed Debugging Tool* (DDT*) 
Allinea* Distributed Debugging Tool (DDT) must be configured to run the user application with the 
necessary Intel libraries preloaded. 

Do the following: 

1. Go to the Run dialog box 

2. Select the Session/Options menu 

3. In the Session/Options menu, choose Intel MPI Library and the Submit through queue or 
configure own mpirun command option 

http://www.roguewave.com/products-services/totalview
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4. In the Submit Command box enter without line breaks: 

$ mpirun -genv LD_PRELOAD libVTmc.so -genv VT_DEADLOCK_TIMEOUT 20s -genv 
VT_DEADLOCK_WARNING 25s 
-n NUM_PROCS_TAG DDTPATH_TAG/bin/ddt-debugger 

5. You can leave other boxes empty. Click OK. 

6. To start the application, press the submit button on DDT's job launch dialog box. 

7. When the application is ready, select the Control/Add Breakpoint menu and add a breakpoint at 
the MessageCheckingBreakpoint function. 

8. Continue to run and debug your application as normal, the program will stop automatically at 
MessageCheckingBreakpoint when an MPI error is detected. 

You can use the parallel stack browser to find the processes that are stopped and select any of these 
processes. The local variables in this function will identify the error type, the number of errors so far, and 
the error message. 

You can also set a condition on this breakpoint from the Breakpoints tab, or Add Breakpoint menu, for 
example, to stop only after 20 errors are reported use a condition of reportnumber > 20. 

See Also 
Allinea* DDT* Product Page 

2.13. Tracing Distributed Non-MPI Applications 
Processes in non-MPI applications or systems are created and communicate using non-standard and 
varying methods. The communication may be slow or unsuitable for Intel® Trace Collector communication 
patterns. Therefore a special version of the Intel® Trace Collector library libVTcs was developed that 
neither relies on MPI nor on the application's communication, but rather implements its own 
communication layer using TCP/IP. This is why it is called client-server. 

The libVTcs library allows the generation of executables that work without MPI. Linking is accomplished 
by adding libVTcs.a (VTcs.lib on Microsoft* Windows* OS) and the libraries it needs to the link line: -
lVTcs $VT_ADD_LIBS. The application has to call VT_initialize() and VT_finalize() to generate 
a tracefile. Function tracing can be used with and without further Intel® Trace Collector API calls to actually 
generate trace events. 

This section describes the design, implementation and usage of Intel® Trace Collector for distributed 
applications. 

2.13.1. Design 
The application has to meet the following requirements: 

• The application handles startup and termination of all processes itself. Both startup with a fixed 
number of processes and dynamic spawning of processes is supported, but spawning processes is 
an expensive operation and should not be done too frequently. 

• For a reliable startup, the application has to gather a short string from every process in one place 
to bootstrap the TCP/IP communication in Intel® Trace Collector. Alternatively, one process is 
started first and its string is passed to the others. In this case you can assume that the string is 
always the same for each program run, but this is less reliable because the string encodes a 
dynamically chosen port which may change. 

• Map the hostname to an IP address that all processes can connect to. 

NOTE 
This is not the case if /etc/hosts lists the hostname as alias for 127.0.0.1 and processes are started on 
different hosts. As a workaround for that case the hostname is sent to other processes, which then 
requires a working name lookup on their host systems. 

http://www.allinea.com/products/ddt
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Intel® Trace Collector for distributed applications consists of a special library (libVTcs) that is linked into 
the application's processes and the VTserver executable, which connects to all processes and 
coordinates the trace file writing. Linking with libVTcs is required to keep the overhead of logging events 
as small as possible, while VTserver can be run easily in a different process. 

Alternatively, the functionality of the VTserver can be accomplished with another API call by one of the 
processes. 

2.13.2. Using VTserver 
This is how the application starts, collects trace data and terminates: 

1. The application initializes itself and its communication. 

2. The application initializes communication between VTserver and processes. 

3. Trace data is collected locally by each process. 

4. VT data collection is finalized, which moves the data from the processes to the VTserver, where it 
is written into a file. 

5. The application terminates. 

The application may iterate several times over points 2 till 4. Looping over 3 and the trace data collection 
part of 4 are not supported at the moment, because: 

• it requires a more complex communication between the application and VTserver 

• the startup time for 2 is expected to be sufficiently small 

• reusing the existing communication would only work well if the selection of active processes does 
not change 

If the startup time turns out to be unacceptably high, then the protocol between application and Intel® 
Trace Collector could be revised to support reusing the established communication channels. 

2.13.3. Initialize and Finalize 
The application has to bootstrap the communication between the VTserver and its clients. This is done as 
follows: 

1. The application server initiates its processes. 

2. Each process calls VT_clientinit(). 

3. VT_clientinit() allocates a port for TCP/IP communication with the VTserver or other clients 
and generates a string which identifies the machine and this port. 

4. Each process gets its own string as result of VT_clientinit(). 

5. The application collects these strings in one place and calls VTserver with all strings as soon as all 
clients are ready. VT configuration is given to the VTserver as file or through command line 
options. 

6. Each process calls VT_initialize() to actually establish communication. 

7. The VTserver establishes communication with the processes, then waits for them to finalize the 
trace data collection. 

8. Trace data collection is finalized when all processes have called VT_finalize(). 

9. Once the VTserver has written the trace file, it quits with a return code indicating success or failure. 

Some of the VT API calls may block, especially VT_initialize(). Execute them in a separate thread if 
the process wants to continue. These pending calls can be aborted with VT_abort(), for example if 
another process failed to initialize trace data collection. This failure has to be communicated by the 
application itself and it also has to terminate the VTserver by sending it a kill signal, because it cannot be 
guaranteed that all processes and the VTserver will detect all failures that might prevent establishing the 
communication. 
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2.13.4. Running without VTserver 
Instead of starting VTserver as rank 0 with the contact strings of all application processes, one application 
process can take over that role. It becomes rank 0 and calls VT_serverinit() with the information 
normally given to VTserver. This changes the application startup only slightly. 

A more fundamental change is supported by first starting one process with rank 0 as server, then taking its 
contact string and passing it to the other processes. These processes then give this string as the initial 
value of the contact parameter in VT_clientinit(). To distinguish this kind of startup from the dynamic 
spawning of process described in the next section, the prefix S needs to be added by the application 
before calling VT_clientinit(). An example where this kind of startup is useful is a process which 
preforks several child processes to do some work. 

In both cases it may be useful to note that the command line arguments previously passed to VTserver can 
be given in the argc/argv array as described in the documentation of VT_initialize(). 

2.13.5. Spawning Processes 
Spawning new processes is expensive, because it involves setting up TCP communication, clock 
synchronization, configuration broadcasting, amongst others. Its flexibility is also restricted because it 
needs to map the new processes into the model of communicators that provide the context for all 
communication events. This model follows the one used in MPI and implies that only processes inside the 
same communicator can communicate at all. 

For spawned processes, the following model is currently supported: one of the existing processes starts 
one or more new processes. These processes need to know the contact string of the spawning process and 
call VT_clientinit() with that information; in contrast to the startup model from the previous section, 
no prefix is used. Then while all spawned processes are inside VT_clientinit(), the spawning process 
calls VT_attach() which does all the work required to connect with the new processes. 

The results of this operation are: 

• a new VT_COMM_WORLD which contains all of the spawned processes, but not the spawning 
process 

• a communicator which contains the spawning process and the spawned ones; the spawning 
process gets it as result from VT_attach() and the spawned processes by calling 
VT_get_parent() 

The first of these communicators can be used to log communication among the spawned processes, the 
second for communication with their parent. There's currently no way to log communication with other 
processes, even if the parent has a communicator that includes them. 

2.13.6. Tracing Events 
Once a process' call to VT_initialize() has completed successfully it can start calling VT API functions 
that log events. These events will be associated with a time stamp generated by Intel® Trace Collector and 
with the thread that calls the function. 

Should the need arise, then VT API functions could be provided that allow one thread to log events from 
several different sources instead of just itself. 

Event types supported at the moment are those also provided in the normal Intel® Trace Collector, like 
state changes (VT_enter(), VT_leave()) and sending and receiving of data (VT_log_sendmsg(), 
VT_log_recvmsg()). The resulting trace file is in a format that can be loaded and analyzed with Intel® 
Trace Analyzer. 

2.13.7. Usage 
Executables in the application are linked with -lVTcs and $VT_ADD_LIBS. It is possible to have processes 
implemented in different languages, as long as they use the same version of the libVTcs. 

The VTserver has the following synopsis: 
VTserver <contact infos> [config options] 
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Each contact info is guaranteed to be one word and their order on the command line is irrelevant. The 
configuration options can be specified on the command line by adding the prefix -- and listing its 
arguments after the keyword. This is an example for contacting two processes and writing into the file 
example.stf in STF format: 
VTserver <contact1> <contact2> --logfile-name example.stf 

All options can be given as environment variables. The format of the configuration file and the 
environment variables are described in more detail in the chapter about VT_CONFIG. 

2.13.8. Signals 
libVTcs uses the same techniques as fail-safe MPI tracing to handle failures inside the application, 
therefore it will generate a trace even if the application segfaults or is aborted with CTRL-C. 

When only one process runs into a problem, then libVTcs tries to notify the other processes, which then 
should stop their normal work and enter trace file writing mode. If this fails and the application hangs, then 
it might still be possible to generate a trace by sending a SIGINT to all processes manually. 

2.13.9. Examples (Linux* OS) 
There are two examples using MPI as means of communication and process handling. But as they are not 
linked against the normal Intel® Trace Collector library, tracing of MPI has to be done with Intel Trace 
Collector API calls. 

clientserver.c is a full-blown example that simulates and handles various error conditions. It uses 
threads and fork/exec to run API functions and VTserver concurrently. simplecs.c is a stripped down 
version that is easier to read, but does not check for errors. 

The dynamic spawning of processes is demonstrated by forkcs.c. It first initializes one process as server 
with no clients, then forks to create new processes and connects to them with VT_attach(). This is 
repeated recursively. Communication is done through pipes and logged in the new communicators. 

forkcs2.c is a variation of the previous example which also uses fork and pipes, but creates the 
additional processes at the beginning without relying on dynamic spawning. 

See Also 
Intel® Trace Collector API 
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3. Intel® Trace Collector Reference 

3.1. Intel® Trace Collector API 
The Intel® Trace Collector library provides the user with a number of functions that control the profiling 
library and record user-defined activities, define groups of processes, define performance counters and 
record their values. Header files with the necessary parameter, macro and function declarations are 
provided in the include directory: VT.h for ANSI C and C++ and VT.inc for Fortran 77 and Fortran 90. It 
is strongly recommended to include these header files if any Intel® Trace Collector API functions are to be 
called. 

You can also find the description of all available API functions in comments for VT.h and in the man pages 
on Linux* OS (man VT). 

The Intel® Trace Collector library is thread-safe in the sense that all of its API functions can be called by 
several threads at the same time. Some API functions can really be executed concurrently, others protect 
global data with POSIX* mutexes. 

3.1.1. Concepts 
This section uses the following concepts, essential for understanding the Intel® Trace Collector API: 

• Symbol – function referred to by its name without the class name. For example: MPI_Send. 

• Activity – set of functions referred to by their class name. For example: MPI. 

• State – function referred to by its full name including the class name (combination of activity and 
symbol). For example: MPI:MPI_Send. 

• State change – event of entering or leaving a function (state). 

For detailed description and examples of these concepts within the framework of the configuration 
functionality, see Filtering Trace Data. 

3.1.2. General Macros and Errors 
#define VT_VERSION 
API version constant. It is incremented each time the API changes, even if the change does not break 
compatibility with the existing API. It can be used to determine at compile time how to call the API, like this: 
#if VT_VERSION > 4000 
   do something 
#else 
   do something different 
#endif 

VT_version() provides the same information at runtime. 

To check whether the current revision of the API is still compatible with the revision of the API that the 
application was written against, compare against both VT_VERSION and VT_VERSION_COMPATIBILITY, 
as shown below. 

#define VT_VERSION_COMPATIBILITY 
Oldest API definition, which is still compatible with the current one. 

It is set to the current version each time an API change can break programs written for the previous API. 
For example, a program written for VT_VERSION 2090 will work with API 3000 if 
VT_VERSION_COMPATIBILITY remained at 2090. It may even work without modifications when 
VT_VERSION_COMPATIBILITY was increased to 3000, but this cannot be determined automatically and 
will require a source code review. 

Here is a usage example: 
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#define APP_VT_VERSION 1000 // API version used by APP 
#ifdef VT_VERSION_COMPATIBILITY > APP_EXPECTED_VT_VERSION 
# error "VT.h is no longer compatible with APP's usage of the API" 
#endif 
#ifdef VT_VERSION < APP_EXPECTED_VT_VERSION 
# error "VT.h is not recent enough for APP" 
#endif 

Suppose you instrumented your C source code for the API with VT_VERSION equal to 3100. Then you 
could add the following code fragment to detect incompatible changes in the API: 
#include <VT.h> 
#if VT_VERSION_COMPATIBILITY > 3100 
# error ITC API is no longer compatible with our calls 
#endif 

Make sure to compare against a fixed number but not VT_VERSION, because VT_VERSION will always be 
greater or equal VT_VERSION_COMPATIBILITY. 

To make the instrumentation work again after such a change, you can either just update the 
instrumentation to accommodate for the change or even provide different instrumentation that is chosen 
by the C preprocessor based on the value of VT_VERSION. 

enum _VT_ErrorCode 
Error codes returned by Intel® Trace Collector API. 

Enumerator Description 

VT_OK OK 

VT_ERR_NOLICENSE No valid license found 

VT_ERR_NOTIMPLEMENTED Not implemented 

VT_ERR_NOTINITIALIZED Not initialized 

VT_ERR_BADREQUEST Invalid request type 

VT_ERR_BADSYMBOLID Wrong symbol ID 

VT_ERR_BADSCLID Wrong SCL ID 

VT_ERR_BADSCL Wrong SCL 

VT_ERR_BADFORMAT Wrong format 

VT_ERR_BADKIND Wrong kind found 

VT_ERR_NOMEMORY Could not get memory 

VT_ERR_BADFILE Error while handling file 

VT_ERR_FLUSH Error while flushing 

VT_ERR_BADARG Wrong argument 

VT_ERR_NOTHREADS No worker threads 
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VT_ERR_BADINDEX Wrong thread index 

VT_ERR_COMM Communication error 

VT_ERR_INVT Intel® Trace Collector API called while inside an Intel® Trace Collector 
function 

VT_ERR_IGNORE Non-fatal error code 

3.1.3. Initialization, Termination and Control 
Intel® Trace Collector is automatically initialized within the execution of the MPI_Init() function. During 
the execution of the MPI_Finalize() function, the trace data collected in memory or in temporary files is 
consolidated and written into the permanent trace file(s), and Intel® Trace Collector is terminated. Thus, it 
is an error to call Intel® Trace Collector API functions before MPI_Init() has been executed or after 
MPI_Finalize() has returned. 

In non-MPI applications it may be necessary to start and stop Intel® Trace Collector explicitly. These calls 
also help write programs and libraries that use Intel® Trace Collector without depending on MPI. 

VT_initialize(), VT_getrank(), VT_finalize() can be used to write applications or libraries which 
work both with and without MPI, depending on whether they are linked with libVT.a plus MPI or with 
libVTcs.a (distributed tracing) and no MPI. 

If the MPI that Intel® Trace Collector was compiled for provides MPI_Init_thread(), then VT_init() 
will call MPI_Init_thread() with the parameter required set to MPI_THREAD_FUNNELED. This is 
sufficient to initialize multithreaded applications where only the main thread calls MPI. If your application 
requires a higher thread level, then either use MPI_Init_thread() instead of VT_init() or (if 
VT_init() is called for example, by your runtime environment) set the environment variable 
VT_THREAD_LEVEL to a value of 0 till 3 to choose thread levels MPI_THREAD_SINGLE till 
MPI_THREAD_MULTIPLE. 

It is not an error to call VT_initialize() twice or after a MPI_Init(). 

In an MPI application written in C, the program parameters must be passed, because the underlying MPI 
might require them. Otherwise they are optional, and 0 or a NULL pointer may be used. If parameters are 
passed, then the number of parameters and the array itself may be modified, either by MPI or Intel® Trace 
Collector itself. 

Intel® Trace Collector assumes that argv[0] is the executable name and uses this string to find the 
executable and as the basename for the default logfile name. Other parameters are ignored unless there 
are special --itc-args parameters. 

See the description of the following functions: 

• VT_initialize 

• VT_finalize 

• VT_getrank 

• VT_getdescription 

• VT_setfinalizecallback 

• VT_countsetcallback 

The following functions control the tracing of threads in a multithreaded application: 

• VT_registerthread 

• VT_registernamed 

• VT_getthrank 
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The recording of performance data can be controlled on a per-process basis by calls to the 
VT_traceon() and VT_traceoff() functions: a thread calling VT_traceoff() will no longer record 
any state changes, MPI communication or counter events. Tracing can be re-enabled by calling the 
VT_traceon() function. The collection of statistics data is not affected by calls to these functions. With 
the API function VT_tracestate() a process can query whether events are currently being recorded. 

See the description of functions: 

• VT_traceon 

• VT_traceoff 

• VT_tracestate 

With the Intel® Trace Collector configuration mechanisms described in Filtering Trace Data, the recording 
of state changes can be controlled per symbol or activity. For any defined symbol, the VT_symstate() 
function returns whether data recording for that symbol has been disabled. 

Find the function description in the following section: 

• VT_symstate 

Intel® Trace Collector minimizes the instrumentation overhead by first storing the recorded trace data 
locally in the memory of  each processor and saving it to disk only when the memory buffers are filled up. 
Calling the VT_flush() function forces a process to save the in-memory trace data to disk, and mark the 
duration of this in the trace. After returning, Intel® Trace Collector continues to work normally. 

• VT_flush 

Intel® Trace Collector makes its internal clock available to applications, which can be useful to write 
instrumentation code that works with MPI and non-MPI applications. 

For more detailed information, refer to the following sections: 

• VT_timestamp 

• VT_timestart 

VT_initialize 
int VT_initialize (int * argc, char *** argv) 

Description 
Initializes the Intel® Trace Collector and underlying communication. 

Fortran 
VTINIT(ierr) 

Parameters 

argc a pointer to the number of command line arguments 

argv a pointer to the program's command line arguments 

Return values 
Returns error code 

VT_finalize 
int VT_finalize(void) 

Description 
Finalizes Intel® Trace Collector and underlying communication. 

It is not an error to call VT_finalize() twice or after a MPI_Finalize(). 



Intel® Trace Collector Reference 

39 

Fortran 
VTFINI(ierr) 

Return values 
Returns error code 

VT_getrank 
int VT_getrank(int * rank) 

Description 
Gets process index (same as MPI rank within MPI_COMM_WORLD). 

NOTE 
This number is not unique in applications with dynamic process spawning. 

Fortran 
VTGETRANK(rank, ierr) 

Return values 

rank stores process index 

Returns error code 

VT_registerthread 
int VT_registerthread(int thindex) 

Description 
Registers a new thread with Intel® Trace Collector under the given number. 

Threads are numbered starting from 0, which is always the thread that has called VT_initialize() or 
MPI_Init(). The call to VT_registerthread() is optional, as the thread that uses Intel® Trace 
Collector without having called VT_registerthread() is automatically assigned the lowest free index. If 
a thread terminates, then its index becomes available again and might be reused for another thread. 

Calling VT_registerthread() when the thread has been assigned an index already is an error, unless 
the argument of VT_registerthread() is equal to this index. The thread is not (re-)registered in case of 
an error. 

Fortran 
VTREGISTERTHREAD(thindex, ierr) 

Parameters 

thindex thread number, only used if >= 0 

Return values 
Returns error codes: 

• VT_ERR_BADINDEX - thread index is currently assigned to another thread 

• VT_ERR_BADARG - thread has been assigned a different index already 

• VT_ERR_NOTINITIALIZED - Intel® Trace Collector has not been initialized yet 

VT_registernamed 
int VT_registernamed (const char * threadname, int thindex) 
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Description 
Registers a new thread with Intel® Trace Collector under the given number and name. 

Threads with the same number cannot have different names. If you try doing that, the thread uses the 
number, but not the new name. 

Registering a thread twice with different names or numbers is an error. You can add a name to an already 
registered thread with VT_registernamed("new name", -1) if no name has been set before. 

Parameters 

threadname desired name of the thread, or NULL/empty string if no name wanted 

thindex desired thread number, pass negative number to let Intel® Trace Collector pick a 
number 

Return values 
Returns error code, see VT_registerthread 

VT_getthrank 
int VT_getthrank (int * thrank) 

Description 
Gets thread index within a process. 

Can be assigned either automatically by Intel® Trace Collector, or manually with VT_registerthread(). 

Fortran 
VTGETTHRANK(thrank, ierr) 

Return values 

thrank thread index within current thread is stored here 

Returns error code 

VT_traceon 
void VT_traceon (void) 

Description 
Turns on tracing for the thread if it was disabled, otherwise does nothing. 

Cannot enable tracing if PROCESS/CLUSTER NO was applied to the process in the configuration. 

Fortran 
VTTRACEON( ) 

VT_traceoff 
void VT_traceoff (void) 

Description 
Turns off tracing for the thread if it was enabled, does nothing otherwise. 

Fortran 
VTTRACEOFF( ) 

VT_tracestate 
int VT_tracestate (int * state) 
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Description 
Gets logging state of current thread. 

Set by configuration options PROCESS/CLUSTER, modified by VT_traceon/off(). 

There are three states: 

• 0 = thread is logging 

• 1 = thread is currently not logging 

• 2 = logging has been turned off completely 

NOTE 
Different threads within one process may be in state 0 and 1 at the same time because 
VT_traceon/off() sets the state of the calling thread, but not for the whole process. 

State 2 is set through the configuration option PROCESS/CLUSTER NO for the whole process and cannot 
be changed. 

Fortran 
VTTRACESTATE( state, ierr ) 

Return values 

state is set to current state 

Returns error code 

VT_symstate 
int VT_symstate (int statehandle, int * on) 

Description 
Gets filter state of one state. 

Set by configuration options SYMBOL, ACTIVITY. 

NOTE 
A state may be active even if the thread logging state is off. 

Fortran 
VTSYMSTATE( statehandle, on, ierr ) 

Parameters 

statehandle result of VT_funcdef() or VT_symdef() 

Return values 

on set to 1 if symbol is active 

Returns error code 

VT_flush 
int VT_flush (void) 

Description 
Flushes all trace records from memory into the flush file. 



Intel® Trace Collector User and Reference Guide 

42 

The location of the flush file is controlled by options in the configuration file. Flushing will be recorded in 
the trace file as entering and leaving the state VT_API:TRACE_FLUSH with time stamps that indicate the 
duration of the flushing. Automatic flushing is recorded as VT_API:AUTO_FLUSH. 

Refer to Configuration Options to learn about the MEM-BLOCKSIZE and MEM-MAXBLOCKS configuration 
options that control Intel® Trace Collector memory usage. 

Fortran 
VTFLUSH(ierr) 

Return values 
Returns error code 

VT_timestamp 
double VT_timestamp (void) 

Description 
In contrast to previous versions, this time stamp no longer represents seconds. Use VT_timeofday() for 
that instead. The result of VT_timestamp() can be copied verbatim and given to other API calls, but 
nothing else. 

Fortran 
DOUBLE PRECISION VTSTAMP() 

Return values 
Returns an opaque time stamp, or VT_ERR_NOTINITIALIZED. 

VT_timestart 
double VT_timestart (void) 

Description 
Writes instrumentation code that works with MPI and non-MPI applications 

Fortran 
DOUBLE PRECISION VTTIMESTART() 

Return values 
Returns point in time in seconds when process started, or VT_ERR_NOTINITIALIZED. 

VT_setfinalizecallback 
int VT_setfinalizecallback( VT_Callback_t callback ) 

Description 
Sets a callback which is called by the Intel® Trace Collector at the beginning of finalization. This function 
may use the Intel Trace Collector API to log events. 

Only one callback can be stored per process, setting another or NULL removes the previous callback. 

Parameters 

callback a pointer to the callback 

Return values 
Returns error code 
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VT_getdescription 
const char *VT_getdescription( int type ) 

Description 
Returns a pointer that describes certain aspects of the library that implements the Intel® Trace Collector 
API. This call can be used by code that is compatible with any library implementing the API, but 
nevertheless wants to identify the implementation. 

Parameters 

type to specify what kind of information is requested (VT_DESCRIPTION_LIB, ... ) 

Return values 
Returns error code 

VT_countsetcallback 
int VT_countsetcallback( VT_CountCallback_t callback, void *custom, int 
ncounters ) 

Description 
Sets a callback for counter sampling for the calling thread. 

The data provided by the callback is logged with the same time stamp as the event that triggered the 
callback. The callback must be set for each thread individually. Setting NULL disables sampling for the 
thread. 

Parameters 

callback address of the callback function or NULL 

custom opaque data that is passed to the callback function by the Intel® Trace Collector; can 
be used by the callback function to identify the thread or enabled counters 

ncounters upper limit for the number of counters returned by the callback. It is not a problem 
to specify a number that is larger than the one that will be actually used, because the 
extra memory provided to the callback function will be reused efficiently. 

Return values 
Returns error code 

3.1.4. Defining and Recording Source Locations 
Source locations can be specified and recorded in two different contexts: 

• State changes, associating a source location with the state change. This is useful to record where a 
function has been called, or where a code region begins and ends. 

• Communication events, associating a source location with calls to MPI functions, for example, calls 
to the send/receive or collective communication and I/O functions. 

To minimize instrumentation overhead, locations for the state changes and communication events are 
referred to by integer location handles that can be defined by calling the API function VT_scldef(), 
which will automatically assign a handle. A source location is a pair of a filename and a line number within 
that file. 

VT_scldef 
int VT_scldef (const char * file, int line_nr, int * sclhandle) 
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Description 
Allocates a handle for a source code location (SCL). 

Fortran 
VTSCLDEF(file, line_nr, sclhandle, ierr) 

Parameters 

file file name 

line_nr line number in this file, counting from 1 

Return values 

sclhandle the integer it points to is set by Intel® Trace Collector 

Returns error code 

Some functions require a location handle, but they all accept VT_NOSCL instead of a real handle: 

#define VT_NOSCL 
Special SCL handle — no location available. 

VT_sclstack 
int VT_sclstack (void * pc, void * stackframe, int skip, int trace, int * 
sclhandle) 

Description 
Allocates a handle for a source code location (SCL) handle which refers to the current call stack. 

This SCL can then be used in several API calls without having to repeat the stack unwinding each time. 
Which stack frames are preserved and which are skipped is determined by the PCTRACE configuration 
option, but can be overridden with function parameters. 

Special support is available for recording source code locations from inside signal handlers by calling this 
function with the pc and stackframe parameters different from NULL. Other usages of these special 
parameters include: 

• Remembering the stack frame in those API calls of a library that are invoked directly by the 
application, then at arbitrary points in the library do stack unwinding based on that stack frame to 
catch just the application code 

• Defining a source code location ID for a specific program counter value 

Here is a usage example of this call inside a library that implements a message send: 
void MySend(struct *msg) { 
   int sclhandle; 
   VT_sclstack( NULL, NULL, // we use the default stack unwinding 
         1,       // MySend() is called directly by the 
                  // application code we want to trace: 
                  // skip our own source code, but not 
                  // more 
         -1,      // default PCTRACE setting for size 
                  // of recorded stack 
         &sclhandle ); 
   // if an error occurs, we continue with the sclhandle == VT_NOSCL 
   // that VT_sclstack() sets 
   VT_enter( funchandle, 
         sclhandle ); 
   VT_log_sendmsg( msg->receiver, 
                  msg->count, 
                  msg->tag, 
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                  msg->commid, 
                  sclhandle ); 
   // do the send here 
   VT_leave( sclhandle ); 
} 

Parameters 

pc record the source code of this program counter value as the innermost call location, 
then continue with normal stack unwinding; NULL if only stack unwinding is to be 
used 

stackframe start unwinding at this stack frame, NULL for starting with the stack frame of 
VT_sclstack() itself: on Intel® 64 architecture the stack frame is found in the RBP 
register 

skip -1: get the number of stack frames to skip from the PCTRACE configuration option 

0: first recorded program counter value after the (optional) pc address is the return 
address of the initial stack frame 

>0: skip the given number of return addresses 

trace -1: get the number of stack frames to record from the PCTRACE configuration option 

0: do not record any source code locations for the call stack: returns an SCL ID for the 
pc address if one is given, otherwise returns VT_NOSCL immediately 

>0: the number of stack frames to record 

Return values 

sclhandle points to the integer set by Intel® Trace Collector to a valid SCL handle in case of 
success and VT_NOSCL otherwise 

Returns error code 

Intel® Trace Collector automatically records all available information about MPI calls. On some systems, 
the source location of these calls is automatically recorded. On the other systems, the source location of 
MPI calls can be recorded by calling the VT_thisloc() function immediately before the call to the MPI 
function, with no intervening MPI or Intel® Trace Collector API calls. 

VT_thisloc 
int VT_thisloc (int sclhandle) 

Description 
Sets source code location for next activity that is logged by Intel® Trace Collector. 

After being logged it is reset to the default behavior again: automatic PC tracing if enabled in the 
configuration file, and supported or no SCL otherwise. 

Fortran 
VTTHISL(sclhandle, ierr) 

Parameters 

sclhandle handle defined either with VT_scldef() 

Return values 
Returns error code 
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3.1.5. Defining and Recording Functions or Regions 
Intel® Trace Analyzer can display and analyze general (properly nested) state changes, relating to function 
calls, entry/exit to/from code regions and other events occurring in a process. Intel® Trace Analyzer 
implements a two-level model of states: a state is referred to by an activity name that identifies a group of 
states, and the state (or symbol) name that references a particular state in that group. For instance, all MPI 
functions are part of the activity MPI, and each one is identified by its function name, for instance 
MPI_Send for C and for Fortran. 

The Intel® Trace Collector API allows the user to define arbitrary activities and symbols and to record entry 
and exit to/from them. In order to reduce the instrumentation overhead, symbols are referred to by integer 
handles that can be managed automatically (using the VT_funcdef() interface) or assigned by the user 
(using the old VT_symdef() function). All activities and symbols are defined by each process that uses 
them, but it is not necessary to define them consistently on all processes (see UNIFY-SYMBOLS). 

Optionally, information about source locations can be recorded for state enter and exit events by passing a 
non-null location handle to the VT_enter()/VT_leave() or VT_beginl()/VT_endl() functions. 

New Interface 
To simplify the use of user-defined states, a new interface has been introduced for Intel® Trace Collector. It 
manages the symbol handles automatically, freeing the user from the task of assigning and keeping track 
of symbol handles, and has a reduced number of arguments. Furthermore, the performance of the new 
functions has been optimized, reducing the overhead of recording state changes. 

To define a new symbol, first create the respective activity by calling the VT_classdef() function. A 
handle for that activity is returned, and the symbol can be defined with it by calling VT_funcdef(). The 
returned symbol handle is passed, for example, to VT_enter() to record a state entry event. 

VT_classdef 
int VT_classdef (const char * classname, int * classhandle) 

Description 

Allocates a handle for a class name. 

The classname may consist of several components separated by a colon :. Leading and trailing colons are 
ignored. Several colons in a row are treated as just one separator. 

Fortran 

VTCLASSDEF(classname, classhandle, ierr) 

Parameters 

classname name of the class 

Return values 

classhandle the integer it points to is set by Intel® Trace Collector 

Returns error code 

VT_funcdef 
int VT_funcdef (const char * symname, int classhandle, int * statehandle) 

Description 

Allocates a handle for a state. 

The symname may consist of several components separated by a colon :. If that's the case, then these 
become the parent class(es). Leading and trailing colons are ignored. Several colons in a row are treated as 
just one separator. 
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This is a replacement for VT_symdef() which doesn't require the application to provide a unique numeric 
handle. 

Fortran 

VTFUNCDEF(symname, classhandle, statehandle, ierr) 

Parameters 

symname name of the symbol 

classhandle handle for the class this symbol belongs to, created with VT_classdef(), or 
VT_NOCLASS, which is an alias for "Application" if the symname does not contain a 
class name and ignored otherwise 

Return values 

statehandle the integer it points to is set by Intel® Trace Collector 

Returns error code 

#define VT_NOCLASS 
Special value for VT_funcdef() – put function into the default class Application. 

Old Interface 
To define a new symbol, first determine which value has to be used for the symbol handle, and then call 
the VT_symdef() function, passing the symbol and activity names, plus the handle value. It is not 
necessary to define the activity itself. Make sure to not use the same handle value for different symbols. 

VT_symdef 
int VT_symdef (int statehandle, const char * symname, const char * activity) 

Description 

Defines the numeric statehandle as shortcut for a state. 

This function will become obsolete and should not be used for new code. Both symname and activity 
may consist of more than one component, separated by a colon :. 

Leading and trailing colons are ignored. Several colons in a row are treated as just one separator. 

Fortran 

VTSYMDEF(code, symname, activity, ierr) 

Parameters 

statehandle numeric value chosen by the application 

symname name of the symbol 

activity name of activity this symbol belongs to 

Return values 

Returns error code 

State Changes 
The following functions take a state handle defined with either the new or old interface. Handles defined 
with the old interface incur a higher overhead in these functions, because they need to be mapped to the 
real internal handles. Therefore it is better to use the new interface. 
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Intel® Trace Collector distinguishes between code regions (marked with VT_begin()/VT_end()) and 
functions (marked with VT_enter()/VT_leave()). The difference is only relevant when passing source 
code locations. 

VT_begin 
int VT_begin (int statehandle) 

Description 

Marks the beginning of a region with the name that was assigned to the symbol. 

Regions should be used to subdivide a function into different parts or to mark the location where a 
function is called. 

If automatic tracing of source code locations (PC tracing) is supported, then Intel® Trace Collector will log 
the location where VT_begin() is called as source code location for this region and the location where 
VT_end() is called as SCL for the next part of the calling symbol (which may be a function or another 
larger region). 

If an SCL has been set with VT_thisloc(), then this SCL will be used even if PC tracing is supported. 

The functions VT_enter() and VT_leave() have been added that can be used to mark the beginning 
and end of a function call within the function itself. The difference is that a manual source code location 
which is given to VT_leave() cannot specify where the function call took place, but rather where the 
function is left. 

If PC tracing is enabled, then the VT_leave function stores the SCL where the instrumented function was 
called as SCL for the next part of the calling symbol. In other words, it skips the location where the function 
is left, which would be recorded if VT_end() were used instead. 

VT_begin() adds an entry to a stack which can be removed only with VT_end(). 

Fortran 

VTBEGIN(statehandle, ierr) 

Parameters 

statehandle handle defined either with VT_symdef() or VT_funcdef() 

Return values 

Returns error code 

VT_beginl 
int VT_beginl (int statehandle, int sclhandle) 

Description 

Shortcut for VT_thisloc(sclhandle); VT_begin(statehandle). 

Fortran 

VTBEGINL(statehandle, sclhandle, ierr) 

VT_end 
int VT_end (int statehandle) 

Description 

Marks the end of a region. 

Has to match a VT_begin(). The parameter was used to check this, but this is no longer done to simplify 
instrumentation; now it is safe to pass a 0 instead of the original state handle. 
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Fortran 

VTEND(statehandle, ierr) 

Parameters 

statehandle obsolete, pass anything you want 

Return values 

Returns error code 

VT_endl 
int VT_endl (int statehandle, int sclhandle) 

Description 

Shortcut for VT_thisloc(sclhandle); VT_end(statehandle). 

Fortran 

VTENDL(statehandle, sclhandle, ierr) 

VT_enter 
int VT_enter (int statehandle, int sclhandle) 

Description 

Mark the beginning of a function. 

Usage similar to VT_beginl(). See also VT_begin(). 

Fortran 

VTENTER(statehandle, sclhandle, ierr) 

Parameters 

statehandle handle defined either with VT_symdef() or VT_funcdef() 

sclhandle handle, defined by VT_scldef. Use VT_NOSCL if you don't have a specific value. 

Return values 

Returns error code 

VT_leave 
int VT_leave (int sclhandle) 

Description 

Mark the end of a function. 

See also VT_begin(). 

Fortran 

VTLEAVE(sclhandle, ierr) 

Parameters 

sclhandle handle, defined by VT_scldef. Currently ignored, but is meant to specify the 
location of exactly where the function was left in the future. Use VT_NOSCL if you 
don't have a specific value. 
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Return values 

Returns error code 

VT_enterstate 
int VT_enterstate (const char * name, int * statehandle, int * truncated) 

Description 

Defines a state (when invoked the first time) and enters it. 

It relies on the caller to provide persistent storage for state handles. 

The corresponding call to leave the state again is the normal VT_leave(). VT_leave() must be called if 
and only if VT_enterstate() returns a zero return code. 
static int bsend_handle, bsend_truncated; 
int bsend_retval; 
bsend_retval = VT_enterstate( "MPI:TRANSFER:BSEND", &bsend_handle, 
&bsend_truncated ); 
... 
if( !bsend_retval) VT_leave( VT_NOSCL ); 

As demonstrated in this example, one or more colons : may be used to specify parent classes of the state, 
just as in VT_funcdef() and others. 

But in contrast to those, VT_enterstate() also treats a slash / as special and uses it to log states at a 
varying degree of detail: depending on the value of DETAILED-STATES (0 = OFF, 1 = ON, 2, 3...), only the 
part of the name before the first slash is used (DETAILED-STATES 0). For higher values of DETAILED-
STATES more components of the name are used and the slashes in the part of the name which is used is 
treated like the class separator (:). 

Examples 

1. "MPI:TRANSFER/SEND/COPY" + DETAILED-STATES 0: "MPI:TRANSFER" 

2. "MPI:TRANSFER/SEND/COPY" + DETAILED-STATES 1: "MPI:TRANSFER:SEND" 

3. "MPI:TRANSFER/SEND/COPY" + DETAILED-STATES >= 2: "MPI:TRANSFER:SEND:COPY" 

4. "/MPI:INTERNAL" + DETAILED-STATES 0: "" = not logged 

5. "/MPI:INTERNAL" + DETAILED-STATES 1: ":MPI:INTERNAL" = "MPI:INTERNAL" 

If (and only if) the configuration option DETAILED-STATES causes the truncation of a certain state name, 
then entering that state is ignored if the process already is in that state. 

Example of trace with DETAILED-STATES 0: 

1. enter "MPI:TRANSFER/WAIT" = enter "MPI:TRANSFER" 

2. enter "MPI:TRANSFER/COPY" = "MPI:TRANSFER" = ignored by Intel® Trace Collector, return 
code != 0 

3. leave "MPI:TRANSFER/COPY" = ignored by application 

4. enter "MPI:TRANSFER/WAIT" = recursive call; ignored too 

5. leave "MPI:TRANSFER/WAIT" = ignored by application 

6. leave "MPI:TRANSFER/WAIT" = leave "MPI:TRANSFER" 

The same trace with DETAILED-STATES 1: 

1. enter "MPI:TRANSFER/WAIT" = enter "MPI:TRANSFER:WAIT" 

2. enter "MPI:TRANSFER/COPY" = enter "MPI:TRANSFER:COPY" 

3. leave "MPI:TRANSFER/COPY" = leave "MPI:TRANSFER:COPY" 

4. enter "MPI:TRANSFER/WAIT" = enter "MPI:TRANSFER:WAIT" 

5. leave "MPI:TRANSFER/WAIT" = leave "MPI:TRANSFER:WAIT" 

6. leave "MPI:TRANSFER/WAIT" = leave "MPI:TRANSFER:WAIT" 
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Fortran 

VTENTERSTATE(name, statehandle, truncated, ierr) 

Parameters 

name the name of the state, with colons and/or slashes as separators as described above 

Return values 

statehandle must be initialized to zero before calling this function for the first time, then is set 
inside the function to the state handle which corresponds to the function which is 
logged 

truncated set when calling the function for the first time: zero if the full name is logged 

Returns zero if state was entered and VT_leave() needs to be called 

VT_wakeup 
int VT_wakeup (void) 

Description 

Triggers the same additional actions as logging a function call, but without actually logging a call. 

When Intel® Trace Collector logs a function entry or exit it might also execute other actions, like sampling 
and logging counter data. If a function runs for a very long time, then Intel® Trace Collector has no chance 
to execute these actions. To avoid that, the programmer can insert calls to this function into the source 
code of the long-running function. 

Fortran 

VTWAKEUP(ierr) 

Return values 

Returns error code 

3.1.6. Defining and Recording Scopes 
Scope is a user-defined region in the source code. In contrast to regions and functions, which are entered 
and left with VT_begin/VT_end() or VT_enter/VT_leave(), scope does not follow the stack based 
approach. It is possible to start scope a, then start scope b and stop a before b, that is they can overlap one 
another: 
   |---- a -----| 
      |------ b ----| 

VT_scopedef 
int VT_scopedef (const char * scopename, int classhandle, int scl1, int scl2, 
int * scopehandle) 

Description 
Define a new scope. A scope is identified by its name and class, like functions. The source code locations 
that can be associated with it are additional and optional attributes; they can be used to mark a static start 
and end of the scope in the source. 

Like functions, scopename may consist of several components separated by a colon :. 

Fortran 
VTSCOPEDEF(scopename, classhandle, scl1, scl2, scopehandle, ierr) 
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Parameters 

scopename the name of the scope 

classhandle the class this scope belongs to (defined with VT_classdef()) 

scl1 any kind of SCL as defined with VT_scldef(), or VT_NOSCL 

scl2 any kind of SCL as defined with VT_scldef(), or VT_NOSCL 

Return values 

scopehandle set to a numeric handle for the scope, needed by VT_scopebegin() 

Returns error code 

VT_scopebegin 
int VT_scopebegin (int scopehandle, int scl, int * seqnr) 

Description 
Starts a new instance of the scope previously defined with VT_scopedef(). 

There can be more than one instance of a scope at the same time. In order to have the flexibility to stop an 
arbitrary instance, Intel® Trace Collector assigns an intermediate identifier to it which can (but does not 
have to) be passed to VT_scopeend(). If the application does not need this flexibility, then it can simply 
pass 0 to VT_scopeend(). 

Fortran 
VTSCOPEBEGIN(scopehandle, scl, seqnr, ierr) 

Parameters 

scopehandle the scope as defined by VT_scopedef() 

scl in contrast to the static SCL given in the scope definition this you can vary with each 
instance; pass VT_NOSCL if not needed 

Return values 

seqnr is set to a number that together with the handle identifies the scope instance; pointer 
may be NULL 

Returns error code 

VT_scopeend 
int VT_scopeend (int scopehandle, int seqnr, int scl) 

Description 
Stops a scope that was previously started with VT_scopebegin(). 

Fortran 
VTSCOPEEND(scopehandle, seqnr, scl) 

Parameters 

scopehandle identifies the scope that is to be terminated 



Intel® Trace Collector Reference 

53 

seqnr 0 terminates the most recent scope with the given handle, passing the seqnr 
returned from VT_scopebegin() terminates exactly that instance 

scl a dynamic SCL for leaving the scope 

 

3.1.7. Defining Groups of Processes 
Intel® Trace Collector enables you to define an arbitrary, recursive group structure over the processes of an 
MPI application, and Intel® Trace Analyzer can display profiling and communication statistics for these 
groups. Thus, you can start with the top-level groups and walk down the hierarchy, unfolding interesting 
groups into ever more detail until you arrive at the level of processes or threads. 

Groups are defined recursively with a simple bottom-up scheme: the VT_groupdef() function builds a 
new group from a list of already defined groups of processes, returning an integer group handle to identify 
the newly defined group. The following handles are predefined: 

enum VT_Group 
Enumerator Description 

VT_ME The calling thread or process 

VT_GROUP_THREAD Group of all threads 

VT_GROUP_PROCESS Group of all processes 

VT_GROUP_CLUSTER Group of all clusters 

To refer to non-local processes, the lookup function VT_getprocid() translates between ranks in 
MPI_COMM_WORLD and handles that can be used for VT_groupdef(). 

VT_getprocid 
int VT_getprocid(int procindex, int * procid) 

Description 
Get global ID for process which is identified by process index. 

If threads are supported, then this ID refers to the group of all threads within the process, otherwise the 
result is identical to VT_getthreadid(procindex, 0, procid). 

Fortran 
VTGETPROCID(procindex, procid, ierr) 

Parameters 

procindex index of process (0 <= procindex < N ) 

Return values 

procidpointer pointer to the memory location where the ID is written 

Returns error code 

The same works for threads. 
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VT_getthreadid 
int VT_getthreadid(int procindex, int thindex, int _ threadid) 

Description 
Get global id for the thread which is identified by the pair of process and thread index. 

Fortran 
VTGETTHREADID(procindex, thindex, threadid, ierr) 

Parameters 

procindex index of process (0 <= procindex < N ) 

thindex index of thread 

Return values 

threadid pointer to the memory location where the ID is written 

Returns error code 

VT_groupdef 
int VT_groupdef(const char * name, int n_members, int * ids, int * grouphandle) 

Description 
Defines a new group and returns a handle for it. 

Groups are distinguished by their name and their members. The order of group members is preserved, 
which can lead to groups with the same name and same set of members, but different order of these 
members. 

Fortran 
VTGROUPDEF(name, n_members, ids[], grouphandle, ierr) 

Parameters 

name the name of the group 

n_members number of entries in the ids array 

ids array where each entry can be either a VT_Group value, or result of 
VT_getthreadid(), VT_getprocid() or VT_groupdef() 

Return values 

grouphandle handle for the new group, or old handle if the group has already been defined 

Returns error code 

To generate a new group that includes the processes with even ranks in MPI_COMM_WORLD, you can use 
the code: 
int *IDS = malloc(sizeof(*IDS)*(number_procs/2)); 
int i, even_group; 
for( i = 0; i < number_procs; i += 2 ) 
  VT_getprocid(i, IDS + i/2); 
VT_groupdef("Even Group", number_procs/2, IDS, &even_group); 
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If threads are used, then they automatically become part of a group that is formed by all threads inside the 
same process. The numbering of threads inside this group depends on the order in which threads call the 
Intel® Trace Collector library because they are registered the first time they invoke the Intel Trace Collector 
library. The order can be controlled by calling VT_registerthread() as the first API function with a 
positive parameter. 

3.1.8. Defining and Recording Counters 
Intel® Trace Collector introduces the concept of counters to model numeric performance data that 
changes over the execution time. Use counters to capture the values of hardware performance counters, or 
of program variables (iteration counts, convergence rate, etc.) or any other numerical quantity. An Intel® 
Trace Collector counter is identified by its name, the counter class it belongs to (similar to the two-level 
symbol naming), and the type of its values (integer or floating-point) and the units that the values are 
quoted in (Example: MFlop/sec). 

A counter can be attached to MPI processes to record process-local data, or to arbitrary groups. When 
using a group, then each member of the group will have its own instance of the counter and when a 
process logs a value it will only update the counter value of the instance the process belongs to. 

Similar to other Intel® Trace Collector objects, counters are referred to by integer counter handles that are 
managed automatically by the library. 

To define a counter, the class it belongs to needs to be defined by calling VT_classdef(). Then, call 
VT_countdef(), and pass the following information: 

• Counter name 

• Data type 

enum VT_CountData 

Enumerator Description 

VT_COUNT_INTEGER Counter measures 64 bit integer value, passed to Intel® Trace Collector 
API as a pair of high and low 32 bit integers 

VT_COUNT_FLOAT Counter measures 64 bit floating point value (native format) 

VT_COUNT_INTEGER64 Counter measures 64 bit integer value (native format) 

VT_COUNT_DATA Mask to extract the data format 

• Kind of data 

enum VT_CountDisplay 

Enumerator Description 

VT_COUNT_ABSVAL Counter are displayed with absolute values 

VT_COUNT_RATE First derivative of counter values is displayed 

VT_COUNT_DISPLAY Mask to extract the display type 

• Semantic associated with a sample value 
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enum VT_CountScope 

Enumerator Description 

VT_COUNT_VALID_BEFORE The value is valid until and at the current time 

VT_COUNT_VALID_POINT The value is valid exactly at the current time, and no value is available 
before or after it 

VT_COUNT_VALID_AFTER The value is valid at and after the current time 

VT_COUNT_VALID_SAMPLE The value is valid at the current time and samples a curve, so for example, 
linear interpolation between sample values is possible 

VT_COUNT_SCOPE Mask to extract the scope 

• Counter target, that is the process or group of processes it belongs to (VT_GROUP_THREAD for a 
thread-local counter, VT_GROUP_PROCESS for a process-local counter, or an arbitrary previously 
defined group handle) 

• Lower and upper bounds 

• Counter unit (an arbitrary string like FLOP, Mbytes) 

VT_countdef 
int VT_countdef (const char * name, int classhandle, int genre, int target, 
const void * bounds, const char * unit, int * counterhandle) 

Description 
Define a counter and get handle for it. 

Counters are identified by their name (string) alone. 

Fortran 
VTCOUNTDEF(name, classhandle, genre, target, bounds[], unit, counterhandle, 
ierr) 

Parameters 

name string identifying the counter 

classhandle class to group counters, handle must have been retrieved by VT_classdef 

genre bitwise or of one value from VT_CountScope, VT_CountDisplay and 
VT_CountData 

target target which the counter refers to (VT_ME, VT_GROUP_THREAD, VT_GROUP_PROCESS, 
VT_GROUP_CLUSTER or thread/process-id or user-defined group handle). 

bounds array of lower and upper bounds (2x 64 bit float, 2x2 32 bit integer, 2x 64 bit integer 
->16 byte) 

unit string identifying the unit for the counter (like Volt, pints etc.) 
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Return values 

counterhandle handle identifying the defined counter 

Returns error code 

The integer counters have 64-bit integer values, while the floating-point counters have a value domain of 
64-bit IEEE floating point numbers. On systems that have no 64-bit integer type in C, and for Fortran, the 
64-bit values are specified using two 32-bit integers. Integers and floats are passed in the native byte 
order, but for VT_COUNT_INTEGER the integer with the higher 32 bits needs to be given first on all 
platforms: 

Counter Value 

VT_COUNT_INTEGER 32 bit integer (high) 

32 bit integer (low) 

VT_COUNT_INTEGER64 64 bit integer 

VT_COUNT_FLOAT 64 bit float 

At any time during execution, a process can record a new value for any of the defined counters by calling 
one of the Intel® Trace Collector API routines described below. To minimize the overhead, it is possible to 
set the values of several counters with one call by passing an integer array of counter handles and a 
corresponding array of values. In C, it is possible to mix 64-bit integers and 64-bit floating point values in 
one value array; in Fortran, the language requires that the value array contains either all integer or all 
floating point values. 

VT_countval 
int VT_countval(int ncounters, int * handles, void * values) 

Description 
Record counter values. 

Values are expected as two 4-byte integers, one 8-byte integer or one 8-byte double, according to the 
counter it refers to. 

Fortran 
VTCOUNTVAL(ncounters, handles[], values[], ierr) 

Parameters 

ncounters number of counters to be recorded 

handles array of ncounters many handles (previously defined by VT_countdef) 

values array of ncounters many values, value[i] corresponds to handles[i]. 

Return Values 
Returns error code 

The examples directory contains counterscopec.c, which demonstrates all of these facilities. 

3.1.9. Recording Communication Events 
These are API calls that allow logging of message send and receive and MPI-style collective operations. 
Because they are modeled after MPI operations, they use the same kind of communicator to define the 
context for the operation. 
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enum _VT_CommIDs 
Logging send/receive events evaluates the rank local within the active communicator, and matches events 
only if they take place in the same communicator (in other words, it is the same behavior as in MPI). 

Defining new communicators is not supported, but the predefined ones can be used. 

Enumerator Description 

VT_COMM_INVALID Invalid ID, do not pass to Intel® Trace Collector 

VT_COMM_WORLD Global ranks are the same as local ones 

VT_COMM_SELF Communicator that only contains the active process 

VT_log_sendmsg 
int VT_log_sendmsg(int other_rank, int count, int tag, int commid, int 
sclhandle) 

Description 
Logs sending of a message. 

Fortran 
VTLOGSENDMSG(other_rank, count, tag, commid, sclhandle, ierr) 

Parameters 

my_rank rank of the sending process 

other_rank rank of the target process 

count number of bytes sent 

tag tag of the message 

commid numeric ID for the communicator (VT_COMM_WORLD, VT_COMM_SELF, or see 
VT_commdef()) 

sclhandle handle as defined by VT_scldef, or VT_NOSCL 

Return values 
Returns error code 

VT_log_recvmsg 
int VT_log_recvmsg(int other_rank, int count, int tag, int commid, int 
sclhandle) 

Description 
Logs receiving of a message. 

Fortran 
VTLOGRECVMSG(other_rank, count, tag, commid, sclhandle, ierr) 
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Parameters 

my_rank rank of the receiving process 

other_rank rank of the source process 

count number of bytes sent 

tag tag of the message 

commid numeric ID for the communicator (VT_COMM_WORLD, VT_COMM_SELF, or see 
VT_commdef()) 

sclhandle handle as defined by VT_scldef, or VT_NOSCL 

Return values 
Returns error code 

The next three calls require a little extra care, because they generate events that not only have a time 
stamp, but also a duration. This means that you need to take a time stamp first, then do the operation and 
finally log the event. 

VT_log_msgevent 
int VT_log_msgevent(int sender, int receiver, int count, int tag, int commid, 
double sendts, int sendscl, int recvscl) 

Description 
Logs sending and receiving of a message. 

Fortran 
VTLOGMSGEVENT(sender, receiver, count, tag, commid, sendts, sendscl, recvscl, 
ierr) 

Parameters 

sender rank of the sending process 

receiver rank of the target process 

count number of bytes sent 

tag tag of the message 

commid numeric ID for the communicator (VT_COMM_WORLD, VT_COMM_SELF, or see 
VT_commdef()) 

sendts time stamp obtained with VT_timestamp() 

sendscl handle as defined by VT_scldef() for the source code location where the message 
was sent, or VT_NOSCL 

recvscl the same for the receive location 

Return values 
Returns error code 
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VT_log_op 
int VT_log_op(int opid, int commid, int root, int bsend, int brecv, double 
startts, int sclhandle) 

Description 
Logs the duration and amount of transferred data of an operation for one process. 

Fortran 
VTLOGOP(opid, commid, root, bsend, brecv, startts, sclhandle, ierr) 

Parameters 

opid id of the operation; must be one of the predefined constants in enum _VT_OpTypes 

commid numeric ID for the communicator; see VT_log_sendmsg() for valid numbers 

root rank of the root process in the communicator (ignored for operations without root, 
must still be valid, though) 

bsend bytes sent by process (ignored for operations that send no data) 

brecv bytes received by process (ignored for operations that receive no data) 

startts the start time of the operation (as returned by VT_timestamp()) 

sclhandle handle as defined by VT_scldef, or VT_NOSCL 

Return values 
Returns error code 

VT_log_opevent 
int VT_log_opevent(int opid, int commid, int root, int numprocs, int _ bsend, 
int _ brecv, double _ startts, int sclhandle) 

Description 
Logs the duration and amount of transferred data of an operation for all involved processes at once. 

Intel® Trace Collector knows which processes send and receive data in each operation. Unused byte counts 
are ignored when writing the trace, so they can be left uninitialized, but NULL is not allowed as array 
address even if no entry is used at all. 

Fortran 
VTLOGOPEVENT(opid, commid, root, numprocs, bsend, brecv, startts, sclhandle, 
ierr) 

Parameters 

opid id of the operation; must be one of the predefined constants in enum _VT_OpTypes 

commid numeric ID for the communicator; see VT_log_sendmsg() for valid numbers 

root rank of the root process in the communicator (ignored for operations without root, 
must still be valid, though) 

numprocs the number of processes in the communicator 
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bsend bytes sent by process 

brecv bytes received by process 

startts the start time of the operation (as returned by VT_timestamp()) 

sclhandle handle as defined by VT_scldef, or VT_NOSCL 

Return values 
Returns error code 

enum _VT_OpTypes 
These are operation IDs that can be passed to VT_log_op(). 

Their representation in the trace file matches that of the equivalent MPI operation. 

User-defined operations are not supported. 

Enumerator Description 

VT_OP_INVALID Undefined operation, should not be passed to Intel® Trace Collector 

VT_OP_COUNT Number of predefined operations 

VT_OP_BARRIER 

VT_OP_IBARRIER 

VT_OP_BCAST 

VT_OP_IBCAST 

VT_OP_GATHER 

VT_OP_IGATHER 

VT_OP_GATHERV 

VT_OP_IGATHERV 

VT_OP_SCATTER 

VT_OP_ISCATTER 

VT_OP_SCATTERV 

VT_OP_ISCATTERV 

VT_OP_ALLGATHER 

VT_OP_IALLGATHER 

VT_OP_ALLGATHERV 

VT_OP_IALLGATHERV 

VT_OP_ALLTOALL 

VT_OP_IALLTOALL 

VT_OP_ALLTOALLV 

VT_OP_IALLTOALLV 

VT_OP_ALLTOALLW 

VT_OP_IALLTOALLW 

VT_OP_NEIGHBOR_ALLGATHER 

MPI operation representations 
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VT_OP_INEIGHBOR_ALLGATHER 

VT_OP_NEIGHBOR_ALLGATHERV 

VT_OP_INEIGHBOR_ALLGATHERV 

VT_OP_NEIGHBOR_ALLTOALL 

VT_OP_INEIGHBOR_ALLTOALL 

VT_OP_NEIGHBOR_ALLTOALLV 

VT_OP_INEIGHBOR_ALLTOALLV 

VT_OP_NEIGHBOR_ALLTOALLW 

VT_OP_INEIGHBOR_ALLTOALLW 

VT_OP_REDUCE 

VT_OP_REDUCE_LOCAL 

VT_OP_IREDUCE 

VT_OP_ALLREDUCE 

VT_OP_IALLREDUCE 

VT_OP_REDUCE_SCATTER 

VT_OP_REDUCE_SCATTER_BLOCK 

VT_OP_IREDUCE_SCATTER 

VT_OP_IREDUCE_SCATTER_BLOCK 

VT_OP_SCAN 

VT_OP_ISCAN 

VT_OP_EXSCAN 

VT_OP_IEXSCAN 

Having a duration also may introduce the problem of having overlapping operations, which has to be taken 
care of with the following two calls. 

VT_begin_unordered 
int VT_begin_unordered(void) 

Description 
Starts a period with out-of-order events. 

Most API functions log events with just one time stamp which is taken when the event is logged. That 
guarantees strict chronological order of the events. 

VT_log_msgevent() and VT_log_opevent() are logged when the event has finished with a start time 
taken earlier with VT_timestamp(). This can break the chronological order, for example, like in the 
following two examples: 
t1: VT_timestamp() "start message" 
t2: VT_end() "leave function" 
t3: VT_log_msgevent( t1 ) "finish message" 
 
t1: VT_timestamp() "start first message" 
t2: VT_timestamp() "start second message" 
t3: VT_log_msgevent( t1 ) "finish first message" 
t4: VT_log_msgevent( t2 ) "finish second message" 

In other words, it is okay to just log a complex event if and only if no other event is logged between its start 
and end in this thread. "logged" in this context includes other complex events that are logged later, but 
with a start time between the other events start and end time. 
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In all other cases you have to alert Intel® Trace Collector of the fact that out-of-order events will follow by 
calling VT_begin_unordered() before and VT_end_unordered() after these events. When writing the 
events into the trace file Intel® Trace Collector increases a counter per thread when it sees a 
VT_begin_unordered() and decrease it at a VT_end_unordered(). Events are remembered and 
sorted until the counter reaches zero, or till the end of the data. 

This means that: 

• unordered periods can be nested 

• it is not necessary to close each unordered period at the end of the trace 

• but not closing them properly in the middle of a trace will force Intel® Trace Collector to use a lot 
more memory when writing the trace (proportional to the number of events till the end of the 
trace). 

Fortran 
VTBEGINUNORDERED(ierr) 

VT_end_unordered 
int VT_end_unordered (void) 

Description 
Close a period with out-of-order events that was started with VT_begin_unordered(). 

Fortran 
VTENDNORDERED(ierr) 

3.1.10. Additional API Calls in libVTcs 
VT_abort 
int VT_abort (void) 

Description 
Abort a VT_initialize() or VT_finalize() call running concurrently in a different thread. 

This call will not block, but it might still take a while before the aborted calls actually return. They will 
return either successfully (if they have completed without aborting) or with an error code. 

Return values 
0 if abort request was sent successfully, error code otherwise 

VT_clientinit 
int VT_clientinit(int procid, const char * clientname, const char * contact) 

Description 
Initializes communication in a client/server application. 

Must be called before VT_initialize() in the client of the application. There are three possibilities: 

• client is initialized first, which produces a contact string that must be passed to the server 
(*contact == NULL) 

• the server was started first, its contact string is passed to the clients (*contact == <result of 
VT_serverinit() with the prefix "S" - this prefix must be added by the 
application>) 

• a process spawns children dynamically, its contact string is given to its children (*contact == 
<result of VT_serverinit() or VT_clientinit()>) 
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Parameters 

procid All clients must be enumerated by the application. This will become the process id of 
the local client inside its VT_COMM_WORLD. If the VTserver is used, then enumeration 
must start at 1 because VTserver always gets rank 0. Threads can be enumerated 
automatically by Intel® Trace Collector or by the client by calling 
VT_registerthread(). 

clientname The name of the client. Currently only used for error messages. Copied by Intel® 
Trace Collector. 

Return values 

contact Will be set to a string which tells other processes how to contact this process. 
Guaranteed not to contain spaces. The client may copy this string, but doesn't have 
to, because Intel® Trace Collector will not free this string until VT_finalize() is 
called. 

Returns error code 

VT_serverinit 
int VT_serverinit(const char * servername, int numcontacts, const char * 
contacts[], const char ** contact) 

Description 
Initializes one process as the server that contacts the other processes and coordinates trace file writing. 

The calling process always gets rank 0. 

There are two possibilities: 

1. Collect all information from the clients and pass them here (numcontacts >= 0, contacts != 
NULL) 

2. Start the server first, pass its contact string to the clients (numcontacts >= 0, contacts == NULL) 

This call replaces starting the VTserver executable in a separate process. Parameters that used to be 
passed to the VTserver to control tracing and trace writing can be passed to VT_initialize() instead. 

Parameters 

servername similar to clientname in VT_clientinit(): the name of the server. Currently only 
used for error messages. Copied by Intel® Trace Collector. 

numcontacts number of client processes 

contacts contact string for each client process (order is irrelevant); copied by Intel® Trace 
Collector 

Return values 

contact will be set to a string which tells spawned children how to contact this server. 
Guaranteed not to contain spaces. The server may copy this string, but doesn't have 
to, because Intel® Trace Collector will not free this string until VT_finalize() is 
called. contact must have been set to NULL before calling this function. 

Returns error code 
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VT_attach 
int VT_attach(int root, int comm, int numchildren, int * childcomm) 

Description 
Connect to several new processes. 

These processes must have been spawned already and need to know the contact string of the root process 
when calling VT_clientinit(). 

comm == VT_COMM_WORLD is currently not implemented. It has some design problems: if several children 
want to use VT_COMM_WORLD to recursively spawn more processes, then their parents must also call 
VT_attach(), because they are part of this communicator. If the VTserver is part of the initial 
VT_COMM_WORLD, then VT_attach() with VT_COMM_WORLD won't work, because the VTserver does not 
know about the spawned processes and never calls VT_attach(). 

Parameters 

root rank of the process that the spawned processes will contact 

comm either VT_COMM_SELF or VT_COMM_WORLD: in the first case root must be 0 and the 
spawned processes are connected to just the calling process. In the latter case all 
processes that share this VT_COMM_WORLD must call VT_attach() and are included 
in the new communicator. root then indicates whose contact infos were given to the 
children. 

numchildren number of children that the spawning processes will wait for 

Return values 

childcomm an identifier for a new communicator that includes the parent processes in the same 
order as in their VT_COMM_WORLD, followed by the child processes in the order 
specified by their procid argument in VT_clientinit(). The spawned processes 
will have access to this communicator through VT_get_parent(). 

Returns error code 

VT_get_parent 
int VT_get_parent (int * parentcomm) 

Description 
Returns the communicator that connects the process with its parent, or VT_COMM_INVALID if not 
spawned. 

Return values 

parentcomm set to the communicator number that can be used to log communication with 
parents 

Returns error code 

3.1.11. C++ API 
These are wrappers around the C API calls which simplify instrumentation of C++ source code and ensure 
correct tracing if exceptions are used. Because all the member functions are provided as inline functions it 
is sufficient to include VT.h to use these classes with every C++ compiler. 
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Here are some examples how the C++ API can be used. nohandles() uses the simpler interface without 
storing handles, while handles() saves these handles in static instances of the definition classes for later 
reuse when the function is called again: 
void nohandles() 
{ 
   VT_Function func( "nohandles", "C++ API", __FILE__, __LINE__ ); 
} 
void handles() 
{ 
   static VT_SclDef scldef( __FILE__, __LINE__ ); 
      // VT_SCL_DEF_CXX( scldef ) could be used instead 
   static VT_FuncDef funcdef( "handles", "C++ API" ); 
   VT_Function func( funcdef, scldef ); 
} 
int main( int argc, char **argv ) 
{ 
   VT_Region region( "call nohandles()", "main" ); 
   nohandles(); 
   region.end(); 
   handles(); 
   handles(); 
   return 0; 
} 

VT_FuncDef Class Reference 

Description 
Defines a function on request and then remembers the handle. 

Can be used to avoid the overhead of defining the function several times in VT_Function. 

Constructor & Destructor Documentation 
VT_FuncDef (const char *symname, const char *classname) 

Member Function Documentation 

int m_handle 

Stores the function handle, 0 if not defined yet. 

const char *m_symname 

Stores the symbol name. 

const char *m_classname 

Stores the class name. 

int GetHandle() 

Checks whether the function is already defined or not. 

Returns handle as soon as it is available, otherwise 0. Defining the function may be impossible for example, 
because Intel® Trace Collector was not initialized or ran out of memory. 

VT_SclDef Class Reference 

Description 
Defines a source code location on request and then remembers the handle. 

Can be used to avoid the overhead of defining the location several times in VT_Function. Best used 
together with the define VT_SCL_DEF_CXX(). 
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Constructor & Destructor Documentation 
VT_SclDef( const char *file, int line ) 

Member Function Documentation 

int m_handle 

Stores the SCL handle, 0 if not defined yet. 

const char *m_file 

Stores the file name. 

int m_line 

Stores the line number. 

int GetHandle() 

Checks whether the SCL is already defined or not. 

Returns handle as soon as it is available, else 0. Defining the function may be impossible for example, 
because Intel® Trace Collector was not initialized or ran out of memory. 

#define VT_SCL_DEF_CXX(_sclvar) static VT_SclDef _sclvar( __FILE__, __LINE__ ) 
This preprocessor macro creates a static source code location definition for the current file and line in C++. 

VT_Function Class Reference 

Description 
In C++ an instance of this class should be created at the beginning of a function. 

The constructor will then log the function entry, and the destructor the function exit. 

Providing a source code location for the function exit manually is not supported, because this source code 
location would have to define where the function returns to. This cannot be determined at compile time. 

Constructor & Destructor Documentation 

VT_Function(const char *symname, const char *classname) 

Defines the function with VT_classdef() and VT_funcdef(), then enters it. 

This is less efficient than defining the function once and then reusing the handle. Silently ignores errors, 
like uninitialized Intel® Trace Collector. 

Parameters: 

symname name of the function 

classname the class this function belongs to 

VT_Function(const char *symname, const char *classname, const char *file, int line) 

The same as the previous constructor, but also stores information about where the function is located in 
the source code. 

Parameters: 

symname name of the function 

classname the class this function belongs to 

file name of source file, may but does not have to include path 
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line line in this file where function starts 

VT_Function(VT_FuncDef &funcdef) 

This is a more efficient version which supports defining the function only once. 

Parameters: 

funcdef this is a reference to the (usually static) instance that defines and remembers the 
function handle 

VT_Function (VT_FuncDef &funcdef, VT_SclDef &scldef) 

This is a more efficient version which supports defining the function and source code location only once. 

Parameters: 

funcdef this is a reference to the (usually static) instance that defines and remembers the 
function handle 

scldef this is a reference to the (usually static) instance that defines and remembers the scl 
handle 

~VT_Function() 

The destructor marks the function exit. 

VT_Region Class Reference 

Description 
This is similar to VT_Function, but should be used to mark regions within a function. 

The difference is that source code locations can be provided for the beginning and end of the region, and 
one instance of this class can be used to mark several regions in one function. 

Constructor & Destructor Documentation 

VT_Region() 

Default constructor. Does not start a region. 

VT_Region(const char *symname, const char *classname) 

Enters the region upon creation. 

VT_Region(const char *symname, const char *classname, const char *file, int line) 

The same as the previous constructor, but also stores information about where the region is located in the 
source code. 

VT_Region(VT_FuncDef &funcdef) 

This is a more efficient version which supports defining the region only once. 

VT_Region(VT_FuncDef &funcdef, VT_SclDef &scldef) 

This is a more efficient version which supports defining the region and source code location only once. 

~VT_Region() 

The destructor marks the region exit. 
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Member Function Documentation 

void begin(const char *symname, const char *classname) 

Defines the region with VT_classdef() and VT_funcdef(), then enters it. 

This is less efficient than defining the region once and then reusing the handle. Silently ignores errors, like 
for example, uninitialized Intel® Trace Collector. 

Parameters: 

symname the name of the region 

classname the class this region belongs to 

void begin(const char *symname, const char *classname, const char *file, int line) 

The same as the previous begin(), but also stores information about where the region is located in the 
source code. 

Parameters: 

symname the name of the region 

classname the class this region belongs to 

file name of source file, may but does not have to include path 

line line in this file where region starts 

void begin(VT_FuncDef &funcdef) 

This is a more efficient version which supports defining the region only once. 

Parameters: 

funcdef this is a reference to the (usually static) instance that defines and remembers the 
region handle 

void begin(VT_FuncDef &funcdef, VT_SclDef &scldef) 

This is a more efficient version which supports defining the region and source code location only once. 

Parameters: 

funcdef this is a reference to the (usually static) instance that defines and remembers the 
region handle 

scldef this is a reference to the (usually static) instance that defines and remembers the scl 
handle 

void end() 

Leaves the region. 

void end(const char *file, int line) 

The same as the previous end(), but also stores information about where the region ends in the source 
code. 

Parameters: 

file name of source file, may but does not have to include path 
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line line in this file where region starts 

void end (VT_SclDef &scldef) 

This is a more efficient version which supports defining the source code location only once. 

Parameters: 

scldef this is a reference to the (usually static) instance that defines and remembers the scl 
handle. 

3.2. Configuration Reference 
3.2.1. Configuration File Format 
General Syntax 
The configuration file is a plain ASCII file with the .conf extension containing a number of configuration 
options with their values, one option per line. Options are evaluated in the order they are listed. 

Any line starting with the # character is ignored. Within a line, a whitespace separates fields, and double 
quotation marks " are used to quote fields containing whitespace. All text is case-insensitive, except for 
filenames. 

Syntax of Parameters 
Apart from having numeric or text values, some configuration options may have one of the values below. 
See description of particular options for their values. 

Time Value 
Time values are usually specified as a pair of one floating point value and one character that represents 
the unit: c for microseconds, l for milliseconds, s for seconds, m for minutes, h for hours, d for days and w 
for weeks. These elementary times are added with a plus sign. For instance, the string 1m+30s refers to 
one minute and 30 seconds of execution time. 

Boolean Value 
Boolean values are set to on/true to turn something on and off/false to turn it off. Using only the 
option name without the on/off argument is the same as on. 

Number of Bytes 
The amount of bytes can be specified with optional suffices B/KB/MB/GB, which multiply the amount in 
front of them by 1, 1024, 10242, 10243, respectively. If no suffix is given the number specifies bytes. 

Example 
Below is an example of a valid configuration file. 
# This line will be ignored 
LOGFILE-NAME trace.stf 
CURRENT-DIR "My Directory/tracing" 
MEM-MAXBLOCKS 8KB 
OS-COUNTER-DELAY 2s 
KEEP-RAW-EVENTS ON 

3.2.2. Protocol File 
The protocol file lists all options with their values used when the program was started and can be used to 
restart an application with exactly the same options. 
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The protocol file is generated along with the tracefile, has the same basename and the .prot extension. It 
has the same syntax and entries as a Intel® Trace Collector configuration file. 

All options are listed, even if they were not present in the original configuration. This way you can find 
about for example, the default value of SYNCED-HOST/CLUSTER on your machine. Comments tell where 
the value came from (default, modified by user, default value set explicitly by the user). 

Besides the configuration entries, the protocol file contains some entries that are only informative. They 
are all introduced by the keyword INFO. The following information entries are supported: 

INFO NUMPROCS 
Syntax: <num> 

Description: Number of processes in MPI_COMM_WORLD. 

INFO CLUSTERDEF 
Syntax: <name> [<rank>:<pid>]+ 

Description: For clustered systems, the processes with Unix process ID <pid> and rank in 
MPI_COMM_WORLD <rank> are running on the cluster node <name>. There will be one line per cluster 
node. 

INFO PROCESS 
Syntax: <rank> "<hostname>" "<IP>" <pid> 

Description: For each process identified by its MPI <rank>, the <hostname> as returned by 
gethostname(), the <pid> from getpid() and all <IP> addresses that <hostname> translates into 
with gethostbyname() are given. IP addresses are converted to string with ntoa() and separated with 
commas. Both hostname and IP string might be empty, if the information was not available. 

INFO BINMODE 
Syntax: <mode> 

Description: Records the floating-point and integer-length execution mode used by the application. 

There may be other INFO entries that represent statistical data about the program run. Their syntax is 
explained in the file itself. 

3.2.3. Configuration Options 
ACTIVITY 

Syntax 
ACTIVITY <pattern> <filter body> 

Variable 
VT_ACTIVITY 

Default 
on 

Description 
A shortcut for STATE "<pattern>:*". 

ALTSTACK 

Syntax 
ALTSTACK [on|off] 
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Variable 
VT_ALTSTACK 

Description 
Handling segfaults due to a stack overflow requires that the signal handler runs on an alternative stack, 
otherwise it will just segfault again, causing the process to terminate. 

Because installing an alternative signal handler affects application behavior, it is normally not done. If it is 
known to work, it is enabled only for MPI correctness checking. 

AUTOFLUSH 

Syntax 
AUTOFLUSH [on|off] 

Variable 
VT_AUTOFLUSH 

Default 
on 

Description 
If enabled (which it is by default), Intel Trace Collector appends blocks that are currently in main memory 
to one flush file per process. During trace file generation this data is taken from the flush file, so no data is 
lost. The number of blocks remaining in memory can be controlled with MEM-MINBLOCKS. 

CHECK 

Syntax 
CHECK <pattern><on|off> 

Variable 
VT_CHECK 

Default 
on 

Description 
Enables or disables error checks matching the pattern. 

CHECK-LEAK-REPORT-SIZE 

Syntax 
CHECK-LEAK-REPORT-SIZE <number> 

Variable 
VT_CHECK_LEAK_REPORT_SIZE 

Default 
10 

Description 
Determines the number of call locations to include in a summary of leaked requests or data types. By 
default only the top ten of the calls which have no matching free call are printed. 
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CHECK-MAX-DATATYPES 

Syntax 
CHECK-MAX-DATATYPES <number> 

Variable 
VT_CHECK_MAX_DATATYPES 

Default 
1000 

Description 
Each time the total number of currently defined data types exceeds a multiple of this threshold, a 
LOCAL:DATATYPE:NOT_FREED warning is printed with a summary of the calls where those requests were 
created. 

Set this to 0 to disable the warning. 

CHECK-MAX-ERRORS 

Syntax 
CHECK-MAX-ERRORS <number> 

Variable 
VT_CHECK_MAX_ERRORS 

Default 
1 

Description 
Number of errors that has to be reached by a process before aborting the application. 0 disables the limit. 
Some errors are fatal and always cause an abort. Errors are counted per-process to avoid the need for 
communication among processes, as that has several drawbacks which outweigh the advantage of a global 
counter. 

Do not ignore errors, because they change the behavior of the application, thus the default value stops 
immediately when the first such error is found. 

CHECK-MAX-PENDING 

Syntax 
CHECK-MAX-PENDING <number> 

Variable 
VT_CHECK_MAX_PENDING 

Default 
20 

Description 
Upper limit of pending messages that are reported per GLOBAL:MSG:PENDING error. 

CHECK-MAX-REPORTS 

Syntax 
CHECK-MAX-REPORTS <number> 
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Variable 
VT_CHECK_MAX_REPORTS 

Default 
0 

Description 
Number of reports (regardless whether they contain warnings or errors) that has to be reached by a 
process before aborting the application. 0 disables the limit. Just as with CHECK-MAX-ERRORS, this is a 
per-process counter. 

It is disabled by default because the CHECK-SUPPRESSION-LIMIT setting already ensures that each type 
of error or warning is only reported a limited number of times. Setting CHECK-MAX-REPORTS would help 
to automatically shut down the application, if that is desired. 

CHECK-MAX-REQUESTS 

Syntax 
CHECK-MAX-REQUESTS <number> 

Variable 
VT_CHECK_MAX_REQUESTS 

Default 
100 

Description 
Each time the total number of active requests or inactive persistent requests exceeds a multiple of this 
threshold, a LOCAL:REQUEST:NOT_FREED warning is printed with a summary of the calls where those 
requests were created. 

Set this to 0 to disable just the warning at runtime without also disabling the warnings at the end of the 
application run. Disable the LOCAL:REQUEST:NOT_FREED check to suppress all warnings. 

CHECK-SUPPRESSION-LIMIT 

Syntax 
CHECK-SUPPRESSION-LIMIT <number> 

Variable 
VT_CHECK_SUPPRESSION_LIMIT 

Default 
10 

Description 
Maximum number of times a specific error or warning is reported before suppressing further reports about 
it. The application continues to run and other problems are still reported. Just as with CHECK-MAX-
ERRORS these are a per-process counters. 

NOTE 
This only counts per error check and does not distinguish between different incarnations of the error in 
different parts of the application. 
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CHECK-TIMEOUT 

Syntax 
CHECK-TIMEOUT <time> 

Variable 
VT_CHECK_TIMEOUT 

Default 
5s 

Description 
After stopping one process because it cannot or is not allowed to continue, the other processes are 
allowed to continue for this amount of time to see whether they run into other errors. 

CHECK-TRACING 

Syntax 
CHECK-TRACING [on|off] 

Variable 
VT_CHECK_TRACING 

Default 
off 

Description 
By default, no events are recorded and no trace file is written during correctness checking with libVTmc. 
This option enables recording of all events also supported by the normal libVT and the writing of a trace 
file. The trace file also contains the errors found during the run. 

In the normal libraries tracing is always enabled. 

CLUSTER 

Syntax 
CLUSTER <triplets> [on|off|no|discard] 

Variable 
VT_CLUSTER 

Description 
Same as PROCESS, but filters are based on the host number of each process. Hosts are distinguished by 
their name as returned by MPI_Get_processor_name() and enumerated according to the lowest rank 
of the MPI processes running on them. 

COMPRESS-RAW-DATA 

Syntax 
COMPRESS-RAW-DATA [on|off] 

Variable 
VT_COMPRESS_RAW_DATA 
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Default 
on in Intel Trace Collector 

Description 
The Intel Trace Collector can store raw data in compressed format. The compression runs in the 
background and does not impact the merge process. By using COMPRESS-RAW-DATA option, you can save 
space in underlying file system and time in transfer over networks. 

COUNTER 

Syntax 
COUNTER <pattern> [on|off] 

Variable 
VT_COUNTER 

Description 
Enables or disables a counter whose name matches the pattern. By default, all counters defined manually 
are enabled, whereas counters defined and sampled automatically by the Intel Trace Collector are 
disabled. Those automatic counters are not supported for every platform. 

CURRENT-DIR 

Syntax 
CURRENT-DIR <directory name> 

Variable 
VT_CURRENT_DIR 

Description 
The Intel Trace Collector uses the current working directory of the process that reads the configuration on 
all processes to resolve relative path names. You can override the current working directory with this 
option. 

DEADLOCK-TIMEOUT 

Syntax 
DEADLOCK-TIMEOUT <delay> 

Variable 
VT_DEADLOCK_TIMEOUT 

Default 
1 minute 

Description 
If Intel Trace Collector observes no progress for this amount of time in any process, then it assumes that a 
deadlock has occurred, stops the application and writes a trace file. 

As usual, the value may also be specified with units, 1m for one minute, for example. 

DEADLOCK-WARNING 

Syntax 
DEADLOCK-WARNING <delay> 
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Variable 
VT_DEADLOCK_WARNING 

Default 
5 minutes 

Description 
If on average the MPI processes are stuck in their last MPI call for more than this threshold, then a 
GLOBAL:DEADLOCK:NO_PROGRESS warning is generated. This is a sign of a load imbalance or a deadlock 
which cannot be detected because at least one process polls for progress instead of blocking inside an MPI 
call. 

As usual, the value may also be specified with units, 1m for one minute, for example. 

DEMANGLE 

Syntax 
DEMANGLE [on|off] 

Variable 
VT_DEMANGLE 

Default 
off 

Description 
Intel® Trace Collector automatically demangles mangled names if this switch is enabled. Name demangling 
is used in compiler driven instrumentation and in correctness checking reports. Intel® Trace Collector uses 
__cxa_demangle from the C++ ABI or UnDecorateSymbolName on Windows* OS. On Linux* OS 
demangling C++ names only works with the naming scheme used by GCC 3.x and newer compilers. 

NOTE 
Some versions of Libstdc++ provide __cxa_demangle that does not work properly in all cases. 

DETAILED-STATES 

Syntax 
DETAILED-STATES [on|off|<level>] 

Variable 
VT_DETAILED_STATES 

Default 
off 

Description 
Enables or disables logging of more information in calls to VT_enterstate(). That function might be 
used by certain MPI implementations, runtime systems or applications to log internal states. If that is the 
case, it will be mentioned in the documentation of those components. 

<level> is a positive number, with larger numbers enabling more details: 

1. 0 (= off) suppresses all additional states 

2. 1 (= on) enables one level of additional states 

3. 2, 3, ... enables even more details 
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ENTER-USERCODE 

Syntax 
ENTER-USERCODE [on|off] 

Variable 
VT_ENTER_USERCODE 

Default 
on in most cases, off for Java* function tracing 

Description 
Usually the Intel Trace Collector enters the Application:User_Code state automatically when 
registering a new thread. This makes little sense when function profiling is enabled, because then the user 
can choose whether he wants the main() function or the entry function of a child thread to be logged or 
not. Therefore it is always turned off for Java* function tracing. In all other cases it can be turned off 
manually with this configuration option. 

However, without automatically entering this state and without instrumenting functions threads might be 
outside of any state and thus not visible in the trace although they exist. This may or may not be intended. 

ENVIRONMENT 

Syntax 
ENVIRONMENT [on|off]  

Variable 
VT_ENVIRONMENT 

Default 
on 

Description 
Enables or disables logging of attributes of the runtime environment. 

EXTENDED-VTF 

Syntax 
EXTENDED-VTF 

Variable 
VT_EXTENDED_VTF 

Default 
off in Intel Trace Collector, on in stftool. 

Description 
Several events can only be stored in STF, but not in VTF. The Intel Trace Collector libraries default to 
writing valid VTF trace files and thus skip these events. This option enables writing of non-standard VTF 
records in ASCII mode that Intel Trace Analyzer would complain about. In the stftool the default is to write 
these extended records, because the output is more likely to be parsed by scripts rather than by Intel 
Trace Analyzer. 
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FLUSH-PID 

Syntax 
FLUSH-PID [on|off] 

Variable 
VT_FLUSH_PID 

Default 
on 

Description 
The -<pid> part in the flush file name is optional and can be disabled with FLUSH-PID off. 

FLUSH-PREFIX 

Syntax 
FLUSH-PREFIX <directory name> 

Variable 
VT_FLUSH_PREFIX 

Default 
Content of environment variables or /tmp 

Description 
Specifies the directory of the flush file. It can be an absolute or relative pathname; in the latter case, it is 
interpreted relative to the current working directory of the process writing it. 

On Unix* systems, the flush file of each process is created and immediately removed while the processes 
keep their file open. This has two effects: 

1. if processes get killed prematurely, flush files do not clutter the file system 

2. during flushing, the remaining space on the file systems gets less although the file which grows is 
not visible anymore 

The file name is VT-flush-<program name>_<rank>-<pid>.dat, with <rank> being the rank of the 
process in MPI_COMM_WORLD and <pid> the Unix process id. 

A good default directory is searched for among the candidates listed below in this order: 

1. first folder with more than 512MB 

2. failing that, folder with most available space 

Candidates (in this order) are the directories referred to with these environment variables and hard-coded 
directory names: 

1. BIGTEMP 

2. FASTTEMP 

3. TMPDIR 

4. TMP 

5. TMPVAR 

6. /work 

7. /scratch 

8. /tmp 
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GROUP 

Syntax 
GROUP <name> <name>|<triplet>[, ...] 

Variable 
VT_GROUP 

Description 
This option defines a new group. The members of the group can be other groups or processes enumerated 
with triplets. Groups are identified by their name. It is possible to refer to automatically generated groups 
(Example: those for the nodes in the machine), however, groups generated with API functions have to be 
defined on the process which reads the config to be usable in config groups. 

Example 
GROUP odd 1:N:2 
GROUP even 0:N:2 
GROUP "odd even" odd,even 

HANDLE-SIGNALS 

Syntax 
HANDLE-SIGNALS <triplets of signal numbers> 

Variable 
VT_HANDLE_SIGNALS 

Default 
none in libVTcs, all in other fail-safe libs 

Description 
This option controls whether the Intel Trace Collector replaces a signal handler previously set by the 
application or runtime system with its own handler. libVTcs by default does not override handlers, while 
the fail-safe MPI tracing libraries do: otherwise they would not be able to log the reason for an abort by 
MPI. 

Using the standard triplet notation, you can both list individual signals (Example: 3) as well as a whole 
range of signals (3,10:100). 

INTERNAL-MPI 

Syntax 
INTERNAL-MPI [on|off] 

Variable 
VT_INTERNAL_MPI 

Default 
on 

Description 
Allows tracing of events inside the MPI implementation. This is enabled by default, but even then it still 
requires an MPI implementation which actually records events. The Intel Trace Collector documentation 
describes in more detail how an MPI implementation might do that. 
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ITFLOGFILE (experimental) 

Syntax 
ITFLOGFILE [on|off] 

Variable 
VT_ITFLOGFILE 

Default 
off 

Description 
Specifies that the tracefile is stored using the indexed tracefile format (ITF) instead of usual STF. This 
configuration option is only applicable when you select  STF for LOGFILE-FORMAT. 

KEEP-RAW-EVENTS 

Syntax 
KEEP-RAW-EVENTS [on|off] 

Variable 
VT_KEEP_RAW_EVENTS 

Default 
off in Intel Trace Collector 

Description 
The Intel Trace Collector can merge the final trace from the collected data at the MPI finalization stage. 
Sometimes it may take much time, especially for large amount of MPI processes and for applications rich 
of MPI events. This option forces the Intel Trace Collector to store the raw data obtained in each process 
into the disk without the merge. Then, you can use the merge function offline. 

LOGFILE-FORMAT 

Syntax 
LOGFILE-FORMAT [ASCII|STF|STFSINGLE|SINGLESTF] 

Variable 
VT_LOGFILE_FORMAT 

Default 
STF 

Description 
Specifies the format of the tracefile. ASCII is the traditional Vampir file format where all trace data is 
written into one file. It is human-readable. 

The Structured Trace File (STF) is a binary format which supports storage of trace data in several files and 
allows Intel Trace Analyzer to analyze the data without loading all of it, so it is more scalable. Writing it is 
only supported by the Intel Trace Collector at the moment. 

One trace in STF format consists of several different files which are referenced by one index file (.stf). 
The advantage is that different processes can write their data in parallel (see STF-PROCS-PER-FILE, 
STF-USE-HW-STRUCTURE). SINGLESTF rolls all of these files into one (.single.stf), which can be read 
without unpacking them again. However, this format does not support distributed writing, so for large 
program runs with many processes the generic STF format is better. 
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LOGFILE-NAME 

Syntax 
LOGFILE-NAME <file name> 

Variable 
VT_LOGFILE_NAME 

Description 
Specifies the name for the tracefile containing all the trace data. Can be an absolute or relative pathname; 
in the latter case, it is interpreted relative to the log prefix (if set) or the current working directory of the 
process writing it. 

If unspecified, then the name is the name of the program plus .avt for ASCII, .stf for STF and 
.single.stf for single STF tracefiles. If one of these suffices is used, then they also determine the logfile 
format, unless the format is specified explicitly. 

In the stftool the name has to be specified explicitly, either by using this option or as argument of the --
convert or --move switch. 

LOGFILE-PREFIX 

Syntax 
LOGFILE-PREFIX <directory name> 

Variable 
VT_LOGFILE_PREFIX 

Description 
Specifies the directory of the trace or log file. It can be an absolute or relative pathname; in the latter case, 
it is interpreted relative to the current working directory of the process writing it. 

LOGFILE-RANK 

Syntax 
LOGFILE-RANK <rank> 

Variable 
VT_LOGFILE_RANK 

Default 
0 

Description 
Determines which process creates and writes the tracefile in MPI_Finalize(). Default value is the 
process reading the configuration file, or the process with rank 0 in MPI_COMM_WORLD. 

MEM-BLOCKSIZE 

Syntax 
MEM-BLOCKSIZE <number of bytes> 

Variable 
VT_MEM_BLOCKSIZE 
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Default 
64KB 

Description 
Intel Trace Collector keeps trace data in chunks of main memory that have this size. 

MEM-FLUSHBLOCKS 

Syntax 
MEM-FLUSHBLOCKS <number of blocks> 

Variable 
VT_MEM_FLUSHBLOCKS 

Default 
1024 

Description 
This option controls when a background thread flushes trace data into the flush file without blocking the 
application. It has no effect if AUTOFLUSH is disabled. Setting this option to a negative value also disables 
the background flushing. 

Flushing is started whenever the number of blocks in memory exceeds this threshold or when a thread 
needs a new block, but cannot get it without flushing. 

If the number of blocks also exceeds MEM-MAXBLOCKS, then the application is stopped until the 
background thread has flushed enough data. 

MEM-INFO 

Syntax 
MEM-INFO <threshold in bytes> 

Variable 
VT_MEM_INFO 

Default 
500MB 

Description 
If larger than zero, Intel Trace Collector prints a message to stderr each time more than this amount of new 
data has been recorded. These messages tell how much data was stored in RAM and in the flush file, and 
can serve as a warning when too much data is recorded. 

MEM-MAXBLOCKS 

Syntax 
MEM-MAXBLOCKS <maximum number of blocks> 

Variable 
VT_MEM_MAXBLOCKS 

Default 
4096 
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Description 
Intel Trace Collector does not allocate more than this number of blocks in main memory. If the maximum 
number of blocks is filled or allocating new blocks fails, Intel Trace Collector either flushes some of them 
onto disk (AUTOFLUSH), or overwrites the oldest blocks (MEM-OVERWRITE) or stops recording further trace 
data. 

MEM-MINBLOCKS 

Syntax 
MEM-MINBLOCKS <minimum number of blocks after flush> 

Variable 
VT_MEM_MINBLOCKS 

Default 
0 

Description 
When Intel Trace Collector starts to flush some blocks automatically, it can flush all of them (the default) or 
keep some in memory. The latter may be useful to avoid long delays or unnecessary disk activity. 

MEM-OVERWRITE 

Syntax 
MEM-OVERWRITE [on|off] 

Variable 
VT_MEM_OVERWRITE 

Default 
off 

Description 
If auto flushing is disabled, enabling this option lets Intel Trace Collector overwrite the oldest blocks of 
trace data with more recent data. 

NMCMD 

Syntax 
NMCMD <command + args> "nm -P" 

Variable 
VT_NMCMD 

Description 
If function tracing with GCC 2.95.2+'s -finstrument-functions is used, Intel Trace Collector is called at 
function entry/exit. Before logging these events, it has to map from the function's address in the 
executable to its name. 

This is done with the help of an external program, usually nm. If it is not appropriate on your system, you 
can override the default. The executable's filename (including the path) is appended at the end of the 
command, and the command is expected to print the result to stdout in the format defined for POSIX.2 
nm. 
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OS-COUNTER-DELAY 

Syntax 
OS-COUNTER-DELAY <delay> 

Variable 
VT_OS_COUNTER_DELAY 

Default 
1 second 

Description 
If OS counters have been enabled with the COUNTER configuration option, then these counters are 
sampled every <delay> seconds. As usual, the value may also be specified with units, 1m for one minute, 
for example. 

PCTRACE 

Syntax 
PCTRACE [on|off|<trace levels>|<skip levels>:<trace levels>] 

Variable 
VT_PCTRACE 

Default 
off for performance analysis, on otherwise 

Description 
Some platforms support the automatic stack sampling for MPI calls and user-defined events. Intel Trace 
Collector then remembers the Program Counter (PC) values on the call stack and translates them to source 
code locations based on debug information in the executable. It can sample a certain number of levels 
(<trace levels>) and skip the initial levels (<skip levels>). Both values can be in the range of 0 to 
15. 

Skipping levels is useful when a function is called from within another library and the source code 
locations within this library shall be ignored. ON is equivalent to 0:1 (no skip levels, one trace level). 

The value specified with PCTRACE applies to all symbols that are not matched by any filter rule or where 
the relevant filter rule sets the logging state to ON. In other words, an explicit logging state in a filter rule 
overrides the value given with PCTRACE. 

PCTRACE-CACHE 

Syntax 
PCTRACE-CACHE [on|off] 

Variable 
VT_PCTRACE_CACHE 

Default 
on 

Description 
When the reliable stack unwinding through libunwind is used, caching the previous stack back trace can 
reduce the number of times libunwind has to be called later on. When unwinding only a few levels this 
caching can negatively affect performance, therefore it can be turned off with this option. 
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PCTRACE-FAST 

Syntax 
PCTRACE-FAST [on|off] 

Variable 
VT_PCTRACE_FAST 

Default 
on for performance tracing, off for correctness checking 

Description 
Controls whether the fast, but less reliable stack unwinding is used or the slower, but less error-prone 
unwinding through libunwind. The fast unwinding relies on frame pointers, therefore all code must be 
compiled accordingly for it to work correctly. 

PLUGIN 

Syntax 
PLUGIN <plugin name> 

Variable 
VT_PLUGIN 

Description 
If this option is used, the Intel Trace Collector activates the given plugin after initialization. The plugin takes 
over responsibility for all function wrappers and normal tracing is disabled. Most of the normal 
configuration options have no effect. Refer to the documentation of the plugin that you want to use for 
further information. 

PROCESS 

Syntax 
PROCESS <triplets> [on|off|no|discard] 

Variable 
VT_PROCESS 

Default 
0:N on 

Description 
Specifies for which processes tracing is to be enabled. This option accepts a comma separated list of 
triplets, each of the form <start>:<stop>:<incr> specifying the minimum and maximum rank and the 
increment to determine a set of processes (similar to the Fortran 90 notation). Ranks are interpreted 
relative to MPI_COMM_WORLD, which means that they start with 0. The letter N can be used as maximum 
rank and is replaced by the current number of processes. For example, to enable tracing only on odd 
process ranks, specify PROCESS 0:N OFF and PROCESS 1:N:2 ON. 

A process that is turned off can later turn logging on by calling VT_traceon() (and vice versa). Using no 
disables Intel Trace Collector for a process completely to reduce the overhead even further, but also so 
that even VT_traceon() cannot enable tracing. 

discard is the same as no, so data is collected and trace statistics is calculated, but the collected data is 
not actually written into the trace file. This mode is useful if looking at the statistics is sufficient: in this case 
there is no need to write the trace data. 
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PROGNAME 

Syntax 
PROGNAME <file name> 

Variable 
VT_PROGNAME 

Description 
This option can be used to provide a fallback for the executable name in case the Intel Trace Collector is 
unable to determine this name from the program arguments. It is also the base name for the trace file. 

In Fortran, it may be technically impossible to determine the name of the executable automatically and the 
Intel Trace Collector may need to read the executable to find source code information (see PCTRACE 
config option). If the file name is unknown and not specified explicitly, UNKNOWN is used. 

PROTOFILE-NAME 

Syntax 
PROTOFILE-NAME <file name> 

Variable 
VT_PROTOFILE_NAME 

Description 
Specifies the name for the protocol file containing the config options and (optionally) summary statistics 
for a program run. It can be an absolute or relative pathname; in the latter case, it is interpreted relative to 
the current working directory of the process writing it. 

If unspecified, the name is the name of the tracefile with the suffix .prot. 

STATISTICS 

Syntax 
STATISTICS [on|off|<hash_size>] 

Variable 
VT_STATISTICS 

Default 
off 

Description 
Enables or disables statistics about messages and symbols. These statistics are gathered by the Intel Trace 
Collector independently from logging them and stored in the tracefile. Apart from on and off, it allows 
specifying the hash size used on each collecting thread. For extensively instrumented codes or for codes 
with a volatile communication pattern, this might be useful to control its performance. 

STATE 

Syntax 
STATE <pattern> <filter body> 

Variable 
VT_STATE 
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Default 
on 

Description 
Defines a filter for any state or function that matches the pattern. Patterns are extended shell patterns: 
they may contain the wildcard characters *, **, ? and [] to match any number of characters but not the 
colon, any number of characters including the colon, exactly one character or a list of specific characters. 
Pattern matching is case insensitive. 

The state or function name that the pattern is applied to consists of a class name and the symbol name, 
separated by a : (colon). Deeper class hierarchies as in Java* or C++ may have several class names, also 
separated by a colon. The colon is special and not matched by the * or ? wildcard. To match it use **. The 
body of the filter may specify the logging state with the same options as PCTRACE. On some platforms 
further options are supported, as described below. 

Valid patterns are: 

• MPI:* (all MPI functions) 

• *:*send* (any function that contains "send" inside any class) 

• **:*send* (any function that contains "send", even if the class actually consists of multiple levels; 
same as **send*) 

• MPI:*send* (only send functions in MPI) 

STF-PROCS-PER-FILE 

Syntax 
STF-PROCS-PER-FILE <number of processes> 

Variable 
VT_STF_PROCS_PER_FILE 

Default 
16 

Description 
In addition to or instead of combining trace data per node, the number of processes per file can be limited. 
This helps to restrict the amount of data that has to be loaded when analyzing a sub-set of the processes. 

If STF-USE-HW-STRUCTURE is enabled, then STF-PROCS-PER-FILE has no effect unless it is set to a 
value smaller than the number of processes running on a node. To get files that contain exactly the data of 
<n> processes, set STF-USE-HW-STRUCTURE to OFF and STF-PROCS-PER-FILE to <n>. 

In a single-process multi-threaded application trace, this configuration option is used to determine the 
number of threads per file. 

STF-USE-HW-STRUCTURE 

Syntax 
STF-USE-HW-STRUCTURE [on|off] 

Variable 
VT_STF_USE_HW_STRUCTURE 

Default 
usually on 
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Description 
If the STF format is used, trace information can be stored in different files. If this option is enabled, trace 
data of processes running on the same node are combined in one file for that node. This is enabled by 
default on most machines, because it both reduces inter-node communication during trace file generation 
and resembles the access pattern during analysis.Iif each process is running on its own node, it is not 
enabled . 

This option can be combined with STF-PROCS-PER-FILE to reduce the number of processes whose data 
is written into the same file even further. 

STOPFILE-NAME 

Syntax 
STOPFILE-NAME <file name> 

Variable 
VT_STOPFILE_NAME 

Description 
Specifies the name of a file which indicates that the Intel Trace Collector should stop the application 
prematurely and write a tracefile. This works only with the fail-safe Intel Trace Collector libraries. On Linux* 
systems the same behavior can be achieved by sending the signal SIGINT to one of the application 
processes, but this is not possible on Microsoft* Windows* OS. 

If specified, the Intel Trace Collector checks for the existence of such a file from time to time. If detected, 
the stop file is removed again and the shutdown is initiated. 

SYMBOL 

Syntax 
SYMBOL <pattern> <filter body> 

Variable 
VT_SYMBOL 

Default 
on 

Description 
A shortcut for STATE "**:<pattern>". 

SYNC-MAX-DURATION 
Syntax: 

SYNC-MAX-DURATION <duration>  

Variable 
VT_SYNC_MAX_DURATION 

Default 
1 minute 

Description 
Intel Trace Collector can use either a barrier at the beginning and the end of the program run to take 
synchronized time stamps on processes or it can use a more advanced algorithm based on statistical 
analysis of message round-trip times. 
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This option enables this algorithm by setting the maximum number of seconds that Intel Trace Collector 
exchanges messages among processes. A value less than or equal to zero disables the statistical algorithm. 

The default duration is much longer than actually needed, because usually the maximum number of 
messages (set through SYNC-MAX-MESSAGES)is reached first. This setting mostly acts as a safe-guard 
against excessive synchronization times, at the cost of potentially reducing the quality of clock 
synchronization when reaching it and then sending less messages. 

SYNC-MAX-MESSAGES 

Syntax 
SYNC-MAX-MESSAGES <message number> 

Variable 
VT_SYNC_MAX_MESSAGES 

Default 
100 

Description 
If SYNC-MAX-DURATION is larger than zero and thus statistical analysis of message round-trip times is 
done, then this option limits the number of message exchanges. 

SYNC-PERIOD 

Syntax 
SYNC-PERIOD <duration> 

Variable 
VT_SYNC_PERIOD 

Default 
-1 seconds = disabled 

Description 
If clock synchronization through message exchanges is enabled (the default), then Intel Trace Collector can 
be told to do message exchanges during the application run automatically. By default, this is disabled and 
needs to be enabled by setting this option to a positive time value. 

The message exchange is done by a background thread and thus needs a means of communication, which 
can execute in parallel to the application's communication, therefore it is not supported by the normal MPI 
tracing library libVT. 

SYNCED-CLUSTER 

Syntax 
SYNCED-CLUSTER [on|off] 

Variable 
VT_SYNCED_CLUSTER 

Default 
off 
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Description 
Use this setting to override whether Intel Trace Collector treats the clock of all processes anywhere in the 
cluster as synchronized or not. Whether Intel Trace Collector makes that assumption depends on the 
selected time source. 

SYNCED-HOST 

Syntax 
SYNCED-HOST [on|off] 

Variable 
VT_SYNCED_HOST 

Default 
off 

Description 
Use this setting to override whether Intel Trace Collector treats the clock of all processes one the same 
node as synchronized or not. Whether Intel Trace Collector makes that assumption depends on the 
selected time source. 

If SYNCED-CLUSTER is on, this option is ignored. 

TIME-WINDOWS (Experimental) 

Syntax 
TIME-WINDOWS <time_value1>:<time_value2>[,<time_value1:time_value2>] 

See the description of the time format in Time Value. 

Variable 
VT_TIME_WINDOWS 

Description 
Use the TIME-WINDOWS option to set up a time frame within which the Intel® Trace Collector will save the 
events into the trace file. When TIME-WINDOWS is not set, Intel Trace Collector collects the whole trace. 

To set several time windows, use the necessary number of time frames separated by commas. 

NOTE 
In some cases correct order of messages can be lost and you can get a message about reversed 
timestamps: 

[0] Intel® Trace Collector WARNING: message logging: 168 different messages, 0 
(0.0%) sends without receive, 5 (3.0%) receives without send, 163 (97.0%) 
messages with reversed time stamps. 

To avoid this issue, include the first communication into the first time window. The time of the first 
communication depends on the application. 

Example 

TIME-WINDOWS 0:1,10:20 

In this case, Intel Trace Collector will trace the first communication, the events from the beginning to the 
first second and the events from the 10th to the 20th second. 
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TIMER 

Syntax 
TIMER <timer name or LIST> 

Variable 
VT_TIMER 

Default 
gettimeofday 

Description 
Intel Trace Collector can use different sources for time stamps. The availability of the different timers may 
depend on the actual machine configuration. 

To get a full list, link an application with the Intel Trace Collector, then run it with this configuration option 
set to LIST. By setting the verbosity to 2 or higher, you get output for each node in a cluster. If initialization 
of a certain timer fails, no error messages are printed in this mode and the timer is specified as unavailable. 
To see error messages, run the program with TIMER set to the name of the timer that you want to use. 

TIMER-SKIP 

Syntax 
TIMER-SKIP <number> 0 

Variable 
VT_TIMER_SKIP 

Description 
Number of intermediate clock sample points, which are to be skipped when running the timertest 
program: they then serve as check that the interpolation makes sense. 

UNIFY-COUNTERS 

Syntax 
UNIFY-COUNTERS [on|off] 

Variable 
VT_UNIFY_COUNTERS 

Default 
on 

Description 
Same as UNIFY-SYMBOLS for counters. 

UNIFY-GROUPS 

Syntax 
UNIFY-GROUPS [on|off] 

Variable 
VT_UNIFY_GROUPS 
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Default 
on 

Description 
Same as UNIFY-SYMBOLS for groups. 

UNIFY-SCLS 

Syntax 
UNIFY-SCLS [on|off] 

Variable 
VT_UNIFY_SCLS 

Default 
on 

Description 
Same as UNIFY-SYMBOLS for SCLs. 

UNIFY-SYMBOLS 

Syntax 
UNIFY-SYMBOLS [on|off] 

Variable 
VT_UNIFY_SYMBOLS 

Default 
on 

Description 
During post-processing Intel Trace Collector unifies the ids assigned to symbols on different processes. 
This step is redundant only if all processes define all symbols in exactly the same order with exactly the 
same names. As Intel Trace Collector cannot recognize this automatically, the unification can be disabled 
by the user to reduce the time required for trace file generation. Before using this option, make sure that 
your program really defines symbols consistently. 

VERBOSE 

Syntax 
VERBOSE [on|off|<level>] 

Variable 
VT_VERBOSE 

Default 
on 

Description 
Enables or disables additional output on stderr. <level> is a positive number, with larger numbers 
enabling more output: 

1. 0 (= off) disables all output 

2. 1 (= on) enables only one final message about generating the result 
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3. 2 enables general progress reports by the main process 

4. 3 enables detailed progress reports by the main process 

5. 4 the same, but for all processes (if multiple processes are used at all) 

6. Levels larger than 2 may contain output that only makes sense to the developers of the Intel Trace 
Collector. 

3.3. Correctness Checking Errors 
3.3.1. Supported Errors 
Errors fall into two different categories: 

• Local errors that need only the information available in the process itself and do not require 
additional communication between processes 

• Global errors that require information from other processes 

Another aspect of errors is whether the application can continue after they occurred. Minor problems are 
reported as warnings and allow the application to continue, but they lead to resource leaks or portability 
problems. Real errors are invalid operations that can only be skipped to proceed, but this either changes 
the application semantic (for example, transmission errors) or leads to follow-up errors (for example, 
skipping an invalid send can lead to a deadlock because of the missing message). Fatal errors cannot be 
resolved at all and require an application shutdown. 

Problems are counted separately per process. Disabled errors are neither reported nor counted, even if 
they still happen to be detected. The application will be aborted as soon as a certain number of errors are 
encountered: obviously the first fatal error always requires an abort. Once the number of errors reaches 
CHECK-MAX-ERRORS or the total number of reports (regardless whether they are warnings or errors) 
reaches CHECK-MAX-REPORTS (whatever comes first), the application is aborted. These limits apply to 
each process separately. Even if one process gets stopped, the other processes are allowed to continue to 
see whether they run into further errors. The whole application is then aborted after a certain trace period. 
This timeout can be set through CHECK-TIMEOUT. 

The default for CHECK-MAX-ERRORS is 1 so that the first error already aborts, whereas CHECK-MAX-
REPORTS is at 100 and thus that many warnings errors are allowed. Setting both values to 0 removes the 
limits. Setting CHECK-MAX-REPORTS to 1 turns the first warning into a reason to abort. 

When using an interactive debugger the limits can be set to 0 manually and thus removed, because the 
user can decide to abort using the normal debugger facilities for application shutdown. If he chooses to 
continue then Intel® Trace Collector will skip over warnings and non-fatal errors and try to proceed. Fatal 
errors still force Intel® Trace Collector to abort the application. 

See the lists of supported errors (the description provides just a few keywords for each error, a more 
detailed description can be found in the following sections). 

Local Errors 

Error Name Type Description 

LOCAL:EXIT:SIGNAL Fatal Process terminated by fatal signal 

LOCAL:EXIT:BEFORE_MPI_FINALIZE Fatal Process exits without calling 
MPI_Finalize() 

LOCAL:MPI:CALL_FAILED Depends on 
MPI and 
error 

MPI itself or wrapper detects an error 
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LOCAL:MEMORY:OVERLAP Warning Multiple MPI operations are started using 
the same memory 

LOCAL:MEMORY:ILLEGAL_MODIFICATION Error Data modified while owned by MPI 

LOCAL:MEMORY:INACCESSIBLE Error Buffer given to MPI cannot be read or 
written 

LOCAL:MEMORY:ILLEGAL_ACCESS Error Read or write access to memory currently 
owned by MPI 

LOCAL:MEMORY:INITIALIZATION Error Distributed memory checking 

LOCAL:REQUEST:ILLEGAL_CALL Error Invalid sequence of calls 

LOCAL:REQUEST:NOT_FREED Warning Program creates suspiciously high 
number of requests or exits with pending 
requests 

LOCAL:REQUEST:PREMATURE_FREE Warning An active request has been freed 

LOCAL:DATATYPE:NOT_FREED Warning Program creates high number of data 
types 

LOCAL:BUFFER:INSUFFICIENT_BUFFER Warning Not enough space for buffered send 

Global Errors 

Error Name Type Description 

GLOBAL:MSG/COLLECTIVE:DATATYPE:MISMATCH Error The type signature does 
not match 

GLOBAL:MSG/COLLECTIVE:DATA_TRANSMISSION_CORRUPTED Error Data modified during 
transmission 

GLOBAL:MSG:PENDING Warning Program terminates with 
unreceived messages 

GLOBAL:DEADLOCK:HARD Fatal A cycle of processes 
waiting for each other 

GLOBAL:DEADLOCK:POTENTIAL Fatala A cycle of processes, one 
or more in blocking send 

GLOBAL:DEADLOCK:NO_PROGRESS Warning Warning when application 
might be stuck 

GLOBAL:COLLECTIVE:OPERATION_MISMATCH Error Processes enter different 
collective operations 
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GLOBAL:COLLECTIVE:SIZE_MISMATCH Error More or less data than 
expected 

GLOBAL:COLLECTIVE:REDUCTION_OPERATION_MISMATCH Error Reduction operation 
inconsistent 

GLOBAL:COLLECTIVE:ROOT_MISMATCH Error Root parameter 
inconsistent 

GLOBAL:COLLECTIVE:INVALID_PARAMETER Error Invalid parameter for 
collective operation 

GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH Warning MPI_Comm_free() must 
be called collectively 

a if check is enabled, otherwise it depends on the MPI implementation 

3.3.2. How It Works 
Understanding how Intel® Trace Collector finds the various supported errors is important because it helps 
to understand what the different configuration options mean, what Intel® Trace Collector can do and what 
it cannot, and how to interpret the results. 

Just as for performance analysis, Intel® Trace Collector intercepts all MPI calls using the MPI profiling 
interface. It has different wrappers for each MPI call. In these wrappers it can execute additional checks not 
normally done by the MPI implementation itself. 

For global checks Intel® Trace Collector uses two different methods for transmitting the additional 
information: in collective operations it executes another collective operation before or after the original 
operation, using the same communicator[1]. For point-to-point communication it sends one additional 
message over a shadow communicator for each message sent by the application. 

In addition to exchanging this extra data through MPI itself, Intel® Trace Collector also creates one 
background thread per process. These threads are connected to each other through TCP sockets and thus 
can communicate with each other even while MPI is being used by the main application thread. 

For distributed memory checking and locking memory that the application should not access, Intel® Trace 
Collector interacts with Valgrind* through Valgrind's client request mechanism. Valgrind tracks 
definedness of memory (that is, whether it was initialized or not) within a process; Intel® Trace Collector 
extends that mechanism to the whole application by transmitting this additional information between 
processes using the same methods which also transmit the additional data type information and restoring 
the correct Valgrind state at the recipient. 

Without Valgrind the LOCAL:MEMORY:ILLEGAL_MODIFICATION check is limited to reporting write 
accesses which modified buffers; typically this is detected long after the fact. With Valgrind, memory which 
the application hands over to MPI is set to "inaccessible" in Valgrind by Intel® Trace Collector and 
accessibility is restored when ownership is transferred back. In between any access by the application is 
flagged by Valgrind right at the point where it occurs. Suppressions are used to avoid reports for the 
required accesses to the locked memory by the MPI library itself. 

See Also 
Running with Valgrind*  

Parameter Checking 
(LOCAL:MPI:CALL_FAILED) 

Most parameters are checked by the MPI implementation itself. Intel® Trace Collector ensures that the MPI 
does not abort when it finds an error, but rather reports back the error through a function's result code. 
Then Intel® Trace Collector looks at the error class and depending on the function where the error 



Intel® Trace Collector Reference 

97 

occurred decides whether the error has to be considered as a warning or a real error. As a general rule, 
calls which free resources lead to warnings and everything else is an error. The error report of such a 
problem includes a stack backtrace (if enabled) and the error message generated by MPI. 

To catch MPI errors this way, Intel® Trace Collector overrides any error handlers installed by the 
application. Errors will always be reported, even if the application or test program sets an error handler to 
skip over known and/or intentionally bad calls. Because the MPI standard does not guarantee that errors 
are detected and that proceeding after a detected error is possible, such programs are not portable and 
should be fixed. Intel® Trace Collector on the other hand knows that proceeding despite an error is allowed 
by all supported MPIs and thus none of the parameter errors is considered a hard error. 

Communicator handles are checked right at the start of an MPI wrapper by calling an MPI function which is 
expected to check its arguments for correctness. Data type handles are tracked and then checked by Intel® 
Trace Collector itself. The extra parameter check is visible when investigating such an error in a debugger 
and although perhaps unexpected is perfectly normal. It is done to centralize the error checking. 

Premature Exit 
(LOCAL:EXIT) 

Intel® Trace Collector monitors the ways how a process can abort prematurely: otherwise fatal signals are 
caught in Intel® Trace Collector signal handlers. An atexit() handler detects situations where the 
application or some library decides to quit. MPI_Abort() is also intercepted. 

This error is presented just like a LOCAL:MPI:CALL_FAILED, with the same options for investigating the 
problem in a debugger. However, these are hard errors and the application cannot continue to run. 

Overlapping Memory 
(LOCAL:MEMORY:OVERLAP) 

Intel® Trace Collector keeps track of memory currently in use by MPI and before starting a new operation, 
checks that the memory that it references is not in use already. 

The MPI standard explicitly transfers ownership of memory to MPI even for send operations. The 
application is not allowed to read it while a send operation is active and must not setup another send 
operation which reads it either. The rationale is that the MPI might modify the data in place before sending 
it and might revert the change afterwards. In practice MPI implementation do not modify the memory, so 
this is a minor problem and just triggers a warning. 

Obviously, writing into the same memory twice in possibly random order or writing into memory which the 
MPI might read from is a real error. However, detecting these real errors is harder for message receives 
because the size of the buffer given to MPI might be larger than the actual message: even if buffers 
overlap, the messages might be small enough to not lead to writes into the same memory. Because the 
overlap check is done when a send buffer is handed over to MPI, only a warning is generated. The 
application might be able to continue normally, but the source code should be fixed because under a strict 
interpretation of the MPI standard using the same buffer twice is already illegal even if the actual messages 
do not overlap. 

Because the problem might be at the place where the memory was given to MPI initially and not where it is 
reused, Intel® Trace Collector also provides both call stacks. 

Detecting Illegal Buffer Modifications 
(LOCAL:MEMORY:ILLEGAL_MODIFICATION) 

MPI owns the memory that active communication references. The application must not touch it during that 
time. Illegal writes into buffers that the MPI is asked to send are detected by calculating a checksum of the 
data immediately before the request is activated and comparing it against a checksum when the send 
completes. If the checksum is different, someone must have modified the buffer. The reported 
LOCAL:MEMORY:ILLEGAL_MODIFICATION is a real error. 

This problem is more common with non-blocking communication because the application gets control 
back while MPI still owns the buffer and then might accidentally modify the buffer. For non-blocking 



Intel® Trace Collector User and Reference Guide 

98 

communication the call stacks of where the send was initiated and where it completed are provided. For 
persistent requests it is also shown where it was created. 

The problem might also occur for blocking communication, for example when the MPI implementation 
incorrectly modifies the send buffer, the program is multithreaded and writes into it or other 
communication happens to write into the buffer. In this case only the call stack of the blocking call where 
the problem was detected gets printed. 

Strictly speaking, reads are also illegal because the MPI standard makes no guaranteed about the content 
of buffers while MPI owns them. Because reads do not modify buffers, such errors are not detected. Writes 
are also not detected when they happen (which would make debugging a lot easier) but only later when 
the damage is detected. 

Buffer Given to MPI Cannot Be Read or Written 
(LOCAL:MEMORY:INACCESSIBLE) 

During the check for LOCAL:MEMORY:ILLEGAL_MODIFICATION of a send buffer Intel® Trace Collector 
will read each byte in the buffer once. This works for contiguous as well as non-contiguous data types. If 
any byte cannot be read because the memory is inaccessible, a LOCAL:MEMORY:INACCESSIBLE is 
reported. This is an error because it is only possible to proceed by skipping the entire operation. 

Disabling the LOCAL:MEMORY:ILLEGAL_MODIFICATION check also disables the accessibility check and 
send operations are then treated like receive operations: for receive operations no similar check is 
performed because the MPI standard does not say explicitly that the whole receive buffer has to be 
accessible - only the part into which an incoming message actually gets copied must be writable. 
Violations of that rule are caught and reported as fatal LOCAL:EXIT:SIGNAL errors. 

Distributed Memory Checking 
(LOCAL:MEMORY:INITIALIZATION) 

This feature is enabled by default if all processes run under Valgrind*. If that is not the case, it is disabled. If 
in doubt, check the configuration summary at the beginning of the run to see whether this feature was 
enabled or not. There are no Intel® Trace Collector error reports with this type; Valgrind's error reports 
have to be watched instead to find problems related to memory initialization. See the section "Use of 
uninitialized values" in Valgrind's user guide for details. 

If enabled, then Valgrind's tracking of memory definedness is extended to the whole application. For 
applications which transmit partially initialized data between processes, this avoids two cases: 

• False positive: sending the message with the partially initialized data triggers a valgrind report for 
send or write system calls at the sender side 

• False negative: at the recipient, valgrind incorrectly assumes that all incoming data is completely 
initialized and thus will not warn if the uninitialized data influences the control flow in the 
recipient; normally it would report that 

To handle the false positive case Valgrind must have been started with the suppression file provided with 
Intel® Trace Collector. The local/memory/valgrind example demonstrates both cases. 

Turning this feature off is useful if the application is supposed to be written in such a way that it never 
transmits uninitialized data. In that case Intel® Trace Collector suppression file should not be used because 
it would suppress warnings at the sender and the LOCAL:MEMORY:ILLEGAL_ACCESS must be disabled as 
it would cause extra valgrind reports. 

See Also 
Running with Valgrind* 

Illegal Memory Access 
(LOCAL:MEMORY:ILLEGAL_ACCESS) 

This feature depends on valgrind the same way as LOCAL:MEMORY:INITIALIZATION. This check goes 
beyond LOCAL:MEMORY:ILLEGAL_MODIFICATION by detecting also reads and reporting them through 
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valgrind at the point where the access happens. Disabling it might improve performance and help if the 
provided suppression rules do not manage to suppress reports about valid accesses to locked memory. 

Request Handling 
(LOCAL:REQUEST) 

When the program terminates Intel® Trace Collector prints a list of all unfreed MPI requests together with 
their status. Unfreed requests are usually currently active and application should have checked their status 
before terminating. Persistent requests can also be passive and need to be freed explicitly with 
MPI_Request_free(). 

Not freeing requests blocks resources inside the MPI and can cause application failures. Each time the total 
number of active requests or inactive persistent requests exceeds another multiple of the CHECK-MAX-
REQUESTS threshold (that is, after 100, 200, 300, . . . requests) a LOCAL:REQUEST:NOT_FREED warning is 
printed with a summary of the most frequent calls where those requests were created. The number of calls 
is configured through CHECK-LEAK-REPORT-SIZE. 

Finalizing the application with pending requests is not an error according to the MPI standard, but is not a 
good practice and can potentially mask real problems. Therefore a request leak report will be always 
generated during finalize if at least one request was not freed. 

If there are pending receives the check for pending incoming messages is disabled because some or all of 
them might match with the pending receives. 

Active requests that were explicitly deleted with MPI_Request_free() will show up in another leak 
report if they have not completed by the time when the application terminates. Most likely this is due to 
not having a matching send or receive elsewhere in the application, but it might also be caused by posting 
and deleting a request and then terminating without giving it sufficient time to complete. 

The MPI standard recommends that receive requests are not freed before they have completed. Otherwise 
it is impossible to determine whether the receive buffer can be read. Although not strictly marked an error 
in the standard, a LOCAL:REQUEST:PREMATURE_FREE warning is reported if the application frees such a 
request prematurely. For send requests the standard describes a method how the application can 
determine that it is safe to reuse the buffer, thus this is not reported as an error. In both cases actually 
deleting the request is deferred in a way which is transparent to the application: at the exit from all MPI 
calls which communicate with other processes Intel® Trace Collector will check whether any of them has 
completed and then execute the normal checking that it does at completion of a request 
(LOCAL:MEMORY:ILLEGAL_MODIFICATION) and also keep track of the ownership of the memory 
(LOCAL:MEMORY:OVERLAP). 

In addition not freeing a request or freeing it too early, persistent requests also require that calls follow a 
certain sequence: create the request, start it and check for completion (can be repeated multiple times), 
delete the request. Starting a request while it is still active is an error which is reported as 
LOCAL:REQUEST:ILLEGAL_CALL. Checking for completion of an inactive persistent request on the other 
hand is not an error. 

Datatype Handling 
(LOCAL:DATATYPE) 

Unfreed data types can cause the same problems as unfreed requests, so the same kind of leak report is 
generated for them when their number exceeds CHECK-MAX-DATATYPES. However, because not freeing 
data types is common practice there is no leak report during finalize unless their number exceeds the 
threshold at that time. That is in contrast to requests which are always reported then. 

Buffered Sends 
(LOCAL:BUFFER:INSUFFICIENT_BUFFER) 

Intel® Trace Collector intercepts all calls related to buffered sends and simulates the worst-case scenario 
that the application has to be prepared for according to the standard. By default 
(GLOBAL:DEADLOCK:POTENTIAL enabled) it also ensures that the sends do not complete before there is 
a matching receive. 
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By doing both it detects several different error scenarios which all can lead to insufficient available buffer 
errors that might not occur depending on timing and/or MPI implementation aspects: 

Buffer Size: The most obvious error is that the application did not reserve enough buffer to store the 
message(s), perhaps because it did not actually calculate the size with MPI_Pack_size() or forgot to add 
the MPI_BSEND_OVERHEAD. This might not show up if the MPI implementation bypasses the buffer, for 
example, for large messages. Example: 
local/buffered_send/size 

Race Condition: Memory becomes available again only when the oldest messages are transmitted. It is the 
responsibility of the application to ensure that this happens in time before the buffer is required again; 
without suitable synchronization an application might run only because it is lucky and the recipients enter 
their receives early enough. Examples: 
local/buffered_send/race 
local/buffered_send/policy 

Deadlock: MPI_Buffer_detach() will block until all messages inside the buffer have been sent. This can 
lead to the same (potential) deadlocks as normal sends. Example: 
local/buffered_send/deadlock 

Since it is critical to understand how the buffer is currently being used when a new buffered send does not 
find enough free space to proceed, the LOCAL:BUFFER:INSUFFICIENT_BUFFER error message contains 
all information about free space, active and completed messages and the corresponding memory ranges. 
Memory ranges are given using the [<start address>, <end address>] notation where the <end 
address> is not part of the memory range. For convenience the number of bytes in each range is also 
printed. For messages this includes the MPI_BSEND_OVERHEAD, so even empty messages have a non-zero 
size. 

Deadlocks 
(GLOBAL:DEADLOCK) 

Deadlocks are detected through a heuristic: the background thread in each process cooperates with the 
MPI wrappers to detect that the process is stuck in a certain MPI call. That alone is not an error because 
some other processes might still make progress. Therefore the background threads communicate if at 
least one process appears to be stuck. If all processes are stuck, this is treated as a deadlock. The timeout 
after which a process and thus the application is considered as stuck is configurable with DEADLOCK-
TIMEOUT. 

The timeout defaults to one minute which should be long enough to ensure that even very long running 
MPI operations are not incorrectly detected as being stuck. In applications which are known to execute 
correct MPI calls much faster, it is advisable to decrease this timeout to detect a deadlock sooner. 

This heuristic fails if the application is using non-blocking calls like MPI_Test() to poll for completion of 
an operation which can no longer complete. This case is covered by another heuristic: if the average time 
spent inside the last MPI call of each process exceeds the DEADLOCK-WARNING threshold, then a 
GLOBAL:DEADLOCK:NO_PROGRESS warning is printed, but the application is allowed to continue because 
the same high average blocking time also occurs in correct application with a high load imbalance. For the 
same reason the warning threshold is also higher than the hard deadlock timeout. 

To help analyzing the deadlock, Intel® Trace Collector prints the call stack of all process. A real hard 
deadlock exists if there is a cycle of processes waiting for data from the previous process in the cycle. This 
data dependency can be an explicit MPI_Recv(), but also a collective operation like MPI_Reduce(). 

If message are involved in the cycle, then it might help to replace send or receive calls with their non-
blocking variant. If a collective operation prevents one process from reaching a message send that another 
process is waiting for, then reordering the message send and the collective operation in the first process 
would fix the problem. 

Another reason could be messages which were accidentally sent to the wrong process. This can be 
checked in debuggers which support that by looking at the pending message queues. In the future Intel® 
Trace Collector might also support visualizing the program run in Intel® Trace Analyzer in case of an error. 
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This would help to find messages which were not only sent to the wrong process, but also received by that 
processes and thus do not show up in the pending message queue. 

In addition to the real hard deadlock from which the application cannot recover MPI applications might 
also contain potential deadlocks: the MPI standard does not guarantee that a blocking send returns unless 
the recipient calls a matching receive. In the simplest case of a head-to-head send with two processes, 
both enter a send and then the receive for the message that the peer just sent. This deadlocks unless the 
MPI buffers the message completely and returns from the send without waiting for the corresponding 
receive. 

Because this relies on undocumented behavior of MPI implementations this is a hard to detect portability 
problem. Intel® Trace Collector detects these GLOBAL:DEADLOCK:POTENTIAL errors by turning each 
normal send into a synchronous send. The MPI standard then guarantees that the send blocks until the 
corresponding receive is at least started. Send requests are also converted to their synchronous 
counterparts; they block in the call which waits for completion. With these changes any potential deadlock 
automatically leads to a real deadlock at runtime and will be handled as described above. To distinguish 
between the two types, check whether any process is stuck in a send function. Due to this way of detecting 
it, even the normally non-critical potential deadlocks do not allow the application to proceed. 

Checking Message Transmission 
(GLOBAL:MSG) 

For each application message, another extra message is sent which includes: 

• Data type signature hash code (for GLOBAL:MSG:DATATYPE:MISMATCH) 

• Checksum of the data (for GLOBAL:MSG:DATA_TRANSMISSION_CORRUPTED) 

• Stack backtrace for the place where the message was sent (for both of these errors and also for 
GLOBAL:MSG:PENDING) 

Only disabling of all of these three errors avoids the overhead for the extra messages. 

Buffered messages which are not received lead to a resource leak. They are detected each time a 
communicator is freed or (if a communicator does not get freed) when the application terminates. 

The information provided includes a call stack of where the message was sent as well as the current call 
stack where the error is detected. 

Datatype Mismatches 
(GLOBAL:*:DATATYPE:MISMATCH) 

Data type mismatches are detected by calculating a hash value of the data type signature and comparing 
that hash value: if the hash values are different, the type signatures must have been different too and an 
error is reported. Because the information about the full type signature at the sender is not available, it has 
to be deduced from the function call parameters and/or source code locations where the data is 
transmitted. 

If the hash values are identical, then there is some small chance that the signatures were different although 
no error is reported. Because of the choice of a very advanced hash function[2] this is very unlikely. This 
hash function can also be calculated more efficiently than traditional hash functions. 

Data Modified during Transmission 
(GLOBAL:*:DATA_TRANSMISSION_CORRUPTED) 

After checking that the data type signatures in a point-to-point message transfer or collective data 
gather/scatter operation at sender and receiver match, Intel ®Trace Collector also verifies that the data was 
transferred correctly by comparing additional checksums that are calculated inside the sending and 
receiving process. This adds another end-to-end data integrity check which will fail if any of the 
components involved in the data transmission malfunctioned (MPI layer, device drivers, hardware). 

In cases where this GLOBAL:*:DATA_TRANSMISSION_CORRUPTED error is obviously the result of some 
other error, it is not reported separately. This currently works for truncated message receives and data 
type mismatches. 
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Checking Collective Operations 
(GLOBAL:COLLECTIVE) 

Checking correct usage of collective operations is easier than checking messages. At the beginning of each 
operation, Intel® Trace Collector broadcasts the same data from rank #0 of the communicator. This data 
includes: 

• Type of the operation 

• Root (zero if not applicable) 

• Reduction type (predefined types only) 

Now all involved processes check these parameters against their own parameters and report an error in 
case of a mismatch. If the type is the same, for collective operations with a root process that rank and for 
reduce operations the reduction operation are also checked. The 
GLOBAL:COLLECTIVE:REDUCTION_OPERATION_MISMATCH error can only be detected for predefined 
reduction operation because it is impossible to verify whether the program code associated with a custom 
reduction operation has the same semantic on all processes. After this step depending on the operation 
different other parameters are also shared between the processes and checked. 

Invalid parameters like MPI_DATATYPE_NULL where a valid data type is required are detected while 
checking the parameters. They are reported as one GLOBAL:COLLECTIVE:INVALID_PARAMETER error 
with a description of the parameter which is invalid in each process. This leads to less output than printing 
one error for each process. 

If any of these checks fails, the original operation is not executed on any process. Therefore proceeding is 
possible, but application semantic will be affected. 

Freeing Communicators 
(GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH) 

A mistake related to MPI_Comm_free() is freeing them in different orders on the involved processes. The 
MPI standard specifies that MPI_Comm_free() must be entered by the processes in the communicator 
collectively. Some MPIs including Intel® MPI Library deadlock if this rule is broken, whereas others 
implement MPI_Comm_free() as a local call with no communication. 

To ensure that this error is detected all the time, Intel® Trace Collector treats MPI_Comm_free() just like 
the other collective operations. There is no special error message for 
GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH, it will be reported as a mismatch between collective calls 
(GLOBAL:COLLECTIVE:OPERATION_MISMATCH) or a deadlock, so 
GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH just refers to the check which enables or disables this test, 
not a specific error instance. 

3.4. Structured Tracefile Format 
The Structured Trace File Format (STF) is a format that stores data in several physical files by default. This 
chapter describes the structure of this format and provides the technical background to configure and 
work with the STF format. It is safe to skip over this chapter because all configuration options that control 
writing of STF have reasonable default values. 

The development of STF was motivated by the observation that the conventional approach of handling 
trace data in a single trace file is not suitable for large applications or systems, where the trace file can 
quickly grow into the tens of gigabytes range. On the display side, such huge amounts of data cannot be 
squeezed into one display at once. There should be mechanisms to enable one to start at a coarser level 
and then dive into details. Additionally, the ability to request and inspect only parts of the data becomes 
essential with the amount of trace data growing. 

These requirements necessitate a more powerful data organization than the previous Intel® Trace Analyzer 
tracefile format can provide. In response to this, the STF has been developed. The aim of the STF is to 
provide a file format which: 
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• Can arbitrarily be partitioned into several files, each one containing a specific subset of the data 

• Allows fast random access and easy extraction of data 

• Is extensible, portable, and upward compatible 

• Is clearly defined and structured 

• Can efficiently exploit parallelism for reading and writing 

• Is as compact as possible 

The traditional tracefile format is only suitable for small applications, and cannot efficiently be written in 
parallel. Also, it was designed for reading the entire file at once, rather than for extracting arbitrary data. 
The structured tracefile implements these new requirements, with the ability to store large amounts of 
data in a more compact form. 

3.4.1. STF Components 
A structured tracefile consists of a number of files, which can be interpreted as one conceptual data set. 
See the approximate structure in the figure below. Depending on the organization of actual files, the 
following component files will be written: 

• Index file <trace>.stf 

• Record declaration file <trace>.stf.dcl 

• Statistics file <trace>.stf.sts 

• Message file <trace>.stf.msg 

• Collective operation file <trace>.stf.cop 

• Process file(s) <trace>.stf.*.<index> (where * is one of the symbols, f, i, s, c, r, or x) 

• For the above three kinds of files, one anchor file each with the extension .anc 

<trace> is the tracefile name, which is determined automatically or set in the LOGFILE-NAME 
configuration option. 
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STF Components 

 
Additionally, five data files may be created for the given trace. These files are Summary Data files. They 
have common name <trace>.stf.sum.<suffix> (where suffix is one of fnc, cop, msg, cnt, or rep) 
and formally are not a part of the trace. You can use these files as additional input for Intel® Trace 
Analyzer. For details of Summary Data usage, see Intel® Trace Analyzer User and Reference Guide. 

The records for routine entry/exit and counters are contained in the process files. The anchor files are used 
by Intel® Trace Analyzer to fast-forward within the record files; they can be deleted, but that may result in 
slower operation of Intel® Trace Analyzer. 

Make sure that you use different names for traces from different runs; otherwise you will experience 
difficulties in identifying which process files belong to an index file, and which ones are left over from a 
previous run. To catch all component files, use the stftool with the --remove option to delete a STF file, 
or put the files into single-file STF format for transmission or archival with the stftool --convert 
option. 

The number of actual process files will depend on the setting of the STF-USE-HW-STRUCTURE and STF-
PROCS-PER-FILE configuration options described below. 

See Also 
STF Manipulation with stftool 

3.4.2. Single-File STF 
Intel® Trace Collector can save the trace data in the single-file STF format. This format is selected by 
specifying the LOGFILE-FORMAT STFSINGLE configuration option, and it causes all the component files 
of an STF trace to be combined into one file with the extension .single.stf. The logical structure is 
preserved. The drawback of the single-file STF format is that no I/O parallelism can be exploited when 
writing the tracefile. 

Reading it for analysis with Intel® Trace Analyzer is only marginally slower than the normal STF format, 
unless the operating system imposes a performance penalty on parallel read accesses to the same file. 
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See Also 
Configuring Intel® Trace Collector 

3.4.3. Configuring STF 
To determine the file layout, you can use the following configuration options: 

• STF-USE-HW-STRUCTURE will save the local events for all processes running on the same node 
into one process file 

• STF-PROCS-PER-FILE <number> limits the number of processes whose events can be written in 
a single process file 

All of these options are explained in more detail in the Configuration Reference section. 

STF Manipulation with stftool 

Synopsis 
stftool <input file> <config options> 
--help 
--version 

Description 
The stftool utility program reads a structured trace file (STF) in normal or single-file format. It can 
perform various operations with this file: 

• extract all or a subset of the trace data (default) 

• convert the file format without modifying the content (--convert ) 

• list the components of the file (--print-files) 

• remove all components (--remove) 

• rename or move the file (--move) 

• list statistics (--print-statistics) 

The output and behavior of stftool is configured similarly to Intel® Trace Collector: with a configuration file, 
environment variables and command line options. The environment variable VT_CONFIG can be set to the 
name of an Intel® Trace Collector configuration file. If the file exists and is readable, then it is parsed first. 
Its settings are overridden with environment variables, which in turn are overridden by configuration 
options on the command line. 

All configuration options can be specified on the command line by adding the prefix -- and listing its 
arguments after the keyword. The output format is derived automatically from the suffix of the output file. 
You can write to stdout by using - as filename; this defaults to writing ASCII VTF*. 

These are examples of converting the entire file into different formats: 
stftool example.stf --convert example.avt # ASCII 
stftool example.stf --convert - # ASCII to stdout 
stftool example.stf --convert - --logfile-format SINGLESTF | gzip -c 
>example.single.stf.gz # gzipped single-file STF  

Without the --convert switch one can extract certain parts, but only write VTF: 
stftool example.stf --request 1s:5s --logfile-name example_1s5s.avt # extract 
interval as ASCII 

All options can be given as environment variables. The format of the configuration file and environment 
variables are described in more detail in the documentation in the Configuration Reference section. 

stftool Utility Options 

convert 
Syntax: --convert [<filename>] 
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Default: off 

Description: Converts the entire file into the file format specified with --logfile-format or the 
filename suffix. Options that normally select a subset of the trace data are ignored when this low-level 
conversion is done. Without this flag writing is restricted to ASCII format, while this flag can also be used to 
copy any kind of STF trace. 

delete-raw-data 
Syntax: --delete-raw-data 

Default: off 

Description: Sub-option to --merge. Deletes or removes the given raw trace after merging. 

dump 
Syntax: --dump 

Default: off 

Description: A shortcut for --logfile-name - and --logfile-format ASCII, that is, it prints the 
trace data to stdout. 

extended-vtf 
Syntax: --extended-vtf 

Default: off in Intel Trace Collector, on in stftool 

Description: Several events can only be stored in STF, but not in VTF. Intel® Trace Collector libraries 
default to writing valid VTF trace files and thus skip these events. This option enables writing of non-
standard VTF records in ASCII mode that Intel® Trace Analyzer would complain about. In the stftool the 
default is to write these extended records, because the output is more likely to be parsed by scripts rather 
than by the Intel Trace Analyzer. 

itflogfile (experimental) 
Syntax: --itflogfile 

Default: off 

Description: Specifies that the tracefile is stored using the indexed tracefile format (ITF) instead of usual 
STF. This configuration option is only applicable when you select STF  in the  --logfile-format option. 

logfile-format 
Syntax: --logfile-format [ASCII|STF|STFSINGLE|SINGLESTF] 

Default: STF 

Description: Specifies the format of the tracefile. ASCII is the traditional Vampir* file format where all trace 
data is written into one file. It is human-readable. 

The Structured Trace File (STF) is a binary format which supports storage of trace data in several files and 
allows Intel® Trace Analyzer to analyze the data without loading all of it, so it is more scalable. Writing it is 
only supported by Intel® Trace Collector. 

One trace in STF format consists of several different files which are referenced by one index file (.stf). 
The advantage is that different processes can write their data in parallel (see STF-PROCS-PER-FILE, STF-
USE-HW-STRUCTURE). SINGLESTF rolls all of these files into one (.single.stf), which can be read 
without unpacking them again. However, this format does not support distributed writing, so for large 
program runs with many processes the generic STF format is better. 

logfile-name 
Syntax: --logfile-name <file name>  
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Description: Specifies the name for the tracefile containing all the trace data. Can be an absolute or 
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or the current working 
directory of the process writing it. 

If unspecified, then the name is the name of the program plus .avt for ASCII, .stf for STF and 
.single.stf for single STF tracefiles. If one of these suffices is used, then they also determine the logfile 
format, unless the format is specified explicitly. 

In the stftool the name has to be specified explicitly, either by using this option or as argument of the --
convert or --move switch. 

matched-vtf 
Syntax: --matched-vtf 

Default: off 

Description: When converting from STF to ASCII-VTF communication records are usually split up into 
conventional VTF records. If this option is enabled, an extended format is written, which puts all 
information about the communication into a single line. 

merge 
Syntax: --merge [<merged trace name>] 

Default: off 

Description: Merges the given raw trace. When you use the --merge option with the --delete-raw-
data option, such configuration deletes the given raw trace after merging. When you use --merge option 
with the --sumdata option, such configuration creates additional Summary Data files for the given 
unmerged trace. 

move 
Syntax: --move [<file/dirname>] 

Default: off 

Description: Moves the given file without otherwise changing it. The target can be a directory. 

print-errors 
Syntax: --print-errors 

Default: off 

Description: Prints the errors that were found in the application. 

print-files 
Syntax: --print-files 

Default: off 

Description: Lists all components that are part of the given STF file, including their size. This is similar to 
ls -l, but also works with single-file STF. 

print-reports 
Syntax: --print-reports  

Default: off 

Description: Prints the Message Checker reports of the input file to stdout. 

print-statistics 
Syntax: --print-statistics 

Default: off 

Description: Prints the precomputed statistics of the input file to stdout. 
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print-threads 
Syntax: --print-threads 

Default: off 

Description: Prints information about each native thread that was encountered by the Intel® Trace 
Collector when generating the trace. 

remove 
Syntax: --remove  

Default: off 

Description: Removes the given file and all of its components. 

request 
Syntax: --request <type>, <thread triplets>, <categories>, <window> 

Description: Restricts the data written into the new trace to the one that matches the arguments. If a 
window is given (in the form <timespec>:<timespec> with at least one unit descriptor), data is 
restricted to this time interval. It has the usual format of a time value, with one exception: the unit for 
seconds s is required to distinguish it from a thread triplet; in other words, use 10s instead of just 10. The 
<type> can be any kind of string in single or double quotation marks, but it has to identify uniquely the 
kind of data. Valid <categories> are FUNCTIONS, SCOPES, FILEIO, COUNTERS, MESSAGES, COLLOPS, 
ERRORS and REQUESTS. 

All of the arguments are optional and default to all threads, all categories and the whole time interval. They 
can be separated by commas or spaces and it is possible to mix them as desired. This option can be used 
more than once and then data matching any request is written. 

sumdata 
Syntax: --sumdata <output trace name> 

Default: off 

Description: Forces creation of additional Summary Data files for the given trace. 

You can use the --sumdat option with or without --merge option. Thus, there can be the following three 
scenarios: 

1. --merge <output trace> Merges the given unmerged trace and creates output merged trace. 

2. --sumdata <output trace> Creates Summary Data files for the given merged trace. 

NOTE 
In this scenario, only Summary Data files is created. No output trace is generated. 

3. --merge --sumdata <output trace> Merges the given unmerged trace; creates output 
merged trace and the Summary Data files for this output trace. 

ticks 
Syntax: --ticks 

Default: off 

Description: Setting this option to on lets stftool interpret all timestamps as ticks (rather than seconds, 
milliseconds and so on). Given time values are converted into seconds and then truncated (floor). The 
clock ticks are based on the nominal clock period specified by the CLKPERIOD header, just as the time 
stamps printed by the stftool for events. 

verbose 
Syntax: --verbose [on|off|<level>]  

Default: on 
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Description: Enables or disables additional output on stderr. <level> is a positive number, with larger 
numbers enabling more output: 

1. 0 (= off) disables all output 

2. 1 (= on) enables only one final message about generating the result 

3. 2 enables general progress reports by the main process 

4. 3 enables detailed progress reports by the main process 

5. 4 the same, but for all processes (if multiple processes are used at all) 

Levels higher than 2 may contain output that only makes sense to the developers of Intel® Trace Collector. 

Expanded ASCII output of STF Files 

Synopsis 
xstftool <STF file> [stftool options] 

Valid options are those that work together with stftool --dump, the most important ones being: 

• --request: extract a subset of the data 

• --matched-vtf: put information about complex events like messages and collective operations 
into one line 

Description 
The xstftool is a simple wrapper around the stftool and the expandvtlog.pl Perl* script which tells 
the stftool to dump a given Structured Trace Format (STF) file in ASCII format and uses the script as a 
filter to make the output more readable. 

It is intended to be used for doing custom analysis of trace data with scripts that parse the output to 
extract information not provided by the existing tools, or for situations where a few shell commands 
provide the desired information more quickly than a graphical analysis tool. 

Output 
The output has the format of the ASCII Vampir* Trace Format (VTF), but entities like function names are 
not represented by integer numbers that cannot be understood without remembering their definitions, but 
rather inserted into each record. The CPU numbers that encode process and thread ranks resp. groups are 
also expanded. 

Examples 
The following examples compare the output of stftool --dump with the expanded output of xstftool: 

• definition of a group 
DEFGROUP 2147942402 "All_Processes" NMEMBS 2 2147483649 2147483650 
DEFGROUP All_Processes NMEMBS 2 "Process_0" "Process_2" 

• a counter sample on thread 2 of the first process 
8629175798 SAMP CPU 131074 DEF 6 UINT 8 3897889661 
8629175798 SAMP CPU 2:1 DEF "PERF_DATA:PAPI_TOT_INS" UINT 8 3897889661 

3.4.4. Indexed Tracefile Format (Experimental) 
Optionally, Intel® Trace Collector can save trace data in the indexed tracefile format (ITF). This is an 
experimental feature. The ITF was developed to provide direct access to particular tracefile records instead 
of tracefile chunks as the existing STF anchors do. An ITF file has the block-oriented structure where 
blocks are linked together forming a multi-branch index/data trees  separated by processes, threads, and 
event types. Each record type has a fixed size, which allows Intel® Trace Collector to easily jump to any 
particular record in the file. The Intel® Trace Collector supports the following two access modes: 

• Sequential access: block-by-block, record-by-record (as regular STF reader does). This access 
mode is used by existing regular tracefile readers (for example, Intel® Trace Analyzer or stftool). 
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• Direct access: using a key (for example, time stamp or event number). This access mode is used by 
Intel® Trace Analyzer to implement the seek and jump function. 

For the first experimental version, the ITF is integrated into the existing STF file structure. Main .stf file, 
declaration and statistics files (.dcl/.sts) are the same as in case of regular STF; event files (.cop, 
.msg, .f, .i, .s, .c, .r) are stored in ITF. 

To select this format, specify the ITFLOGFILE configuration option (--itflogfile stftool option), which 
is useful only in combination with the LOGFILE-FORMAT STF directive. 

3.5. Time Stamping 
Intel® Trace Collector assigns a local time stamp to each event it records. A time stamp consists of two 
parts which together guarantee that each time stamp is unique: 

Clock Tick counts how often the timing source incremented since the start of the run. 

Event Counter is incremented for each time stamp which happens to have the same clock tick as the 
previous time stamp. In the unlikely situation that the event counter overflows, Intel® Trace Collector 
artificially increments the clock tick. When running Intel® Trace Collector with VERBOSE > 2, it will print the 
maximum number of events on the same clock tick during the whole application run. A non-zero number 
implies that the clock resolution was too low to distinguish different events. 

Both counters are stored in a 64-bit unsigned integer with the event counter in the low-order bits. Legacy 
applications can still convert time stamps as found in a trace file to seconds by multiplying the time stamp 
with the nominal clock period defined in the trace file header: if the event counter is zero, this will not incur 
any error at all. Otherwise the error is most likely still very small. The accurate solution however is to shift 
the time stamp by the amount specified as event bits in the trace header (and thus removing the event 
counter), then multiplying with the nominal clock period and 2 to the power of event bits. 

Intel® Trace Collector uses 51 bits for clock ticks, which is large enough to count 251ns, which equals to 
more than 26 days before the counter overflows. At the same time with a clock of only ms resolution, you 
can distinguish 8192 different events with the same clock tick, which are events with duration of 0.1 μs. 

Before writing the events into the global trace file, local time stamps are replaced with global ones by 
modifying their clock tick. A situation where time stamps with different local clock ticks fall on the same 
global clock tick is avoided by ensuring that global clock ticks are always larger than local ones. The 
nominal clock period in the trace file is chosen so that it is sufficiently small to capture the offsets between 
nodes as well as the clock correction: both leads to fractions of the real clock period and rounding errors 
would be incurred when storing the trace with the real clock period. The real clock period might be hard to 
figure out exactly anyway. Also, the clock ticks are scaled so that the whole run takes exactly as long as 
determined with gettimeofday() on the master process. 

3.5.1. Clock Synchronization 
By default, Intel® Trace Collector synchronizes the different clocks at the start and at the end of a program 
run by exchanging messages in a fashion similar to the Network Time Protocol (NTP): one process is 
treated as the master and its clock becomes the global clock of the whole application run. During clock 
synchronization, the master process receives a message from a child process and replies by sending its 
current time stamp. The child process then stores that time stamp together with its own local send and 
receive time stamps. One message is exchanged with each child, then the cycles starts again with the first 
child until SYNC-MAX-MESSAGES have been exchanged between master and each child or the total 
duration of the synchronization exceeds SYNC-MAX-DURATION. 

Intel® Trace Collector can handle timers which are already synchronized among all process on a node 
(SYNCED-HOST) and then only does the message exchange between nodes. If the clock is even 
synchronized across the whole cluster (SYNCED-CLUSTER), then no synchronization is done by Intel® 
Trace Collector at all. 

The gathered data of one message exchange session is used by the child processes to calculate the offset 
between its clock and the master clock: it is assumed that the duration of messages with equal size is 



Intel® Trace Collector Reference 

111 

equally fast in both directions, so that the average of local send and receive time coincides with the master 
time stamp in the middle of the message exchange. To reduce the noise, the 10% message pairs with the 
highest local round-trip time are ignored because those are the ones which most likely suffered from not 
running either process in time to react in a timely fashion or other external delays. 

With clock synchronization at the start and the end, Intel® Trace Collector clock correction uses a linear 
transformation; that is a scaling local clock ticks and shifting them, which is calculated by linear regression 
of all available sample data. If the application also calls VT_timesync() during the run, then clock 
correction is done with a piece-wise interpolation: the data of each message exchange session is 
condensed into one pair of local and master time by averaging all data points, then a constrained spline is 
constructed which goes through all of the condensed points and has a contiguous first derivative at each 
of these joints. 

VT_timesync 
int VT_timesync(void) 

Description 
Gathers data needed for clock synchronization. 

This is a collective call, so all processes which were started together must call this function or it will block. 

This function does not work if processes were spawned dynamically. 

Fortran 
VTTIMESYNC(ierr) 

3.5.2. Choosing a Timer 
A good timer has the following properties: 

• High resolution (one order of magnitude higher than the resolution of the events that are to be 
traced) 

• Low overhead 

• Linearly increasing values for a long period of time (at least for the duration of a program run); in 
particular it should not jump forwards or backwards 

Intel® Trace Collector supports several different timers. Because the quality of these timers depends on 
factors which are hard to predict (like specific OS bugs, available hardware and so on), you can run a test 
program if you want to find answers to the following questions: 

• What is the resolution of a timer? 

• What is its overhead? 

• How well does clock synchronization work with the default linear transformation? 

• If it does not work well, how often does the application have to synchronize to achieve good non-
linear interpolation? 

To test the quality of each timer, link the timerperformance.c program from the examples directory. 
The makefile already has a target vttimertest (linked against libVT and MPI) and for timertestcs 
(linked against libVTcs and no MPI). Use the MPI version if you have MPI, because libVT supports all the 
normal timers from libVTcs plus MPI_Wtime and because only the MPI version can test whether the 
clock increases linearly by time-stamping message exchanges. 

To get a list of supported timers, run with the configuration option TIMER set to LIST. This can be done 
easily by setting the VT_TIMER environment variable. The subsections below have more information about 
possible choices, but not all of them may be available on each system. 

To test an individual timer, run the binary with TIMER set to the name of the timer to be tested. It will 
repeatedly acquire time stamps and then for each process (vttimertest) or the current machine 
(timertestcs) print a histogram of the clock increments observed. A good timer has most increments 
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close or equal to the minimum clock increment that it can measure. Bad clocks have a very high minimum 
clock increment (a bad resolution) or only occasionally increment by a smaller amount. 

Here is the output of timertestcs one a machine with a good gettimeofday() clock: 
bash$ VT_TIMER=gettimeofday ./timertestcs 
performance: 2323603 calls in 5.000s wall clock time = 2.152us/call = 
464720 calls/s 
measured clock period/frequency vs. nominal: 
1.000us/1.000MHz vs. 1.000us/1.000MHz 
overhead for sampling loop: 758957 clock ticks (= 758.958ms) 
for 10000000 iterations = 0 ticks/iteration 
average increase: 2 clock ticks = 2.244us = 0.446MHz 
median increase: 2 clock ticks = 2.000us = 0.500MHz 
< 0 ticks = 0.00s : 0 
< 1 ticks = 1.00us: 0 
>= 1 ticks = 1.00us: #################### 2261760 
>= 501 ticks = 501.00us: 1 
>= 1001 ticks = 1.00ms: 0 
... 

The additional information at the top starts with the performance (and thus overhead) of the timer. The 
next line compares the measured clock period (calculated as elapsed wall clock time divided by clock ticks 
in the measurement interval) against the one that the timer is said to have; for gettimeofday() this is 
not useful, but for example CPU cycle counters (details below) there might be differences. Similarly, the 
overhead for an empty loop with a dummy function call is only relevant for a timer like CPU cycle counters 
with a very high precision. For that counter however the overhead caused by the loop is considerable, so 
during the measurement of the clock increments Intel® Trace Collector subtracts the loop overhead. 

Here is an example with the CPU cycle counter as timer: 
bash$ VT_TIMER=CPU ./timertestcs 
performance: 3432873 calls in 5.000s wall clock time = 1.457us/call = 
686535 calls/s 
measured clock period/frequency vs. nominal: 
0.418ns/2392.218MHz vs. 0.418ns/2392.356MHz 
overhead for sampling loop: 1913800372 clock ticks (= 800.011ms) 
for 10000000 iterations = 191 ticks/iteration 
average increase: 3476 clock ticks = 1.453us = 0.688MHz 
median increase: 3473 clock ticks = 1.452us = 0.689MHz 
< 0 ticks = 0.00s : 0 
< 1 ticks = 0.42ns: 0 
>= 1 ticks = 0.42ns: 0 
>= 501 ticks = 209.43ns: 0 
>= 1001 ticks = 418.44ns: 0 
>= 1501 ticks = 627.45ns: 0 
>= 2001 ticks = 836.46ns: 0 
>= 2501 ticks = 1.05us: 0 
>= 3001 ticks = 1.25us: #################### 3282286 
>= 3501 ticks = 1.46us: 587 
>= 4001 ticks = 1.67us: 8 
>= 4501 ticks = 1.88us: 1 
>= 5001 ticks = 2.09us: 869 

Testing whether the timer increases linearly is more difficult. It is done by comparing the send and receive 
time stamps of ping-pong message exchanges between two processes after Intel® Trace Collector has 
applied its time synchronization algorithm to them: the algorithm will scale and shift the time stamps 
based on the assumption that data transfer in both directions is equally fast. So if the synchronization 
works, the average difference between the duration of messages in one direction minus the duration of the 
replies has to be zero. The visualization of the trace timertest.stf should show equilateral triangles. 

If the timer increases linearly, then one set of correction parameters applies to the whole trace. If it does 
not, then clock synchronization might be good in one part of the trace and bad in another or even more 
obvious, be biased towards one process in one part with a positive difference and biased towards the 
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other in another part with a negative difference. In either case tweaking the correction parameters would 
fix the time stamps of one data exchange, but just worsen the time stamps of another. 

When running the MPI vttimertest with two or more processes it will do a short burst of data exchanges 
between each pair of processes, then sleep for 10 seconds. This cycle is repeated for a total runtime of 30 
seconds. This total duration can be modified by giving the number of seconds as command line parameter. 
Another argument on the command line also overrides the duration of the sleep. After MPI_Finalize() 
the main process will read the resulting trace file and print statistics about the message exchanges: for 
each pair of processes and each burst of message exchanges, the average offset between the two 
processes is given. Ideally these offsets will be close to zero, so at the end the pair of processes with the 
highest absolute clock offset between sender and receiver will be printed: 
maximum clock offset during run: 
1 <-> 2 374.738ns (latency 6.752us) 
to produce graph showing trace timing, run: gnuplot timertest.gnuplot 

If the value is much smaller than the message latency, then clock correction worked well throughout the 
whole program run and can be trusted to accurately time individual messages. 

Running the test program for a short interval is useful to test whether the NTP-like message exchange 
works in principle, but to get realistic results you have to run the test for several minutes. If a timer is used 
which is synchronized within a node, then you should run with one process per node because Intel® Trace 
Collector would use the same clock correction for all processes on the same node anyway. Running with 
multiple processes per node in this case would only be useful to check whether the timer really is 
synchronized within the node. 

To better understand the behavior of large runs, several data files and one command file for gnuplot are 
generated. Running gnuplot as indicated above will produce several graphs: 

Graph Description 

Application Run Connects the offsets derived from the application's message exchanges with 
straight lines: it shows whether the deviation from the expected zero offset is 
linear or not; it can be very noisy because outliers are not removed 

Clock Transformation Shows the clock samples that Intel® Trace Collector itself took at the 
application start, end and in VT_timesync() and what the transformation 
from local clock ticks to global clock ticks looks like 

Interpolation Error Compares a simple linear interpolation of Intel® Trace Collector's sample data 
against the non-linear constrained spline interpolation: at each sample point, 
the absolute delta between measured time offset and the corresponding 
interpolated value is shown above the x-axis (for linear interpolation) and 
below (for splines) 

Raw Clock Samples For the first three message exchanges of each process, the raw clock samples 
taken by Intel® Trace Collector are shown in two different ways: all samples and 
just those actually used by Intel® Trace Collector after removing outliers. 

In these displays the height of the error bars corresponds to the round-trip 
time of each sample measured on the master. If communication works reliably, 
most samples should have the same round-trip time. 

The graphs use different coordinate systems: the first one uses global time for both axis; the latter two 
have local time on the x-axis and a delta in global time on the y-axis. Thus although the same error will 
show up in all of them, in one graph it will appear as a deviation for example below the x-axis and in the 
other above it.  

Also, the latter two graphs are only useful if Intel® Trace Collector really uses non-linear interpolation 
which is not the case if all intermediate clock samples are skipped: although the test program causes a 
clock synchronization before each message exchange by calling VT_timesync(), at the same time it tells 
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Intel® Trace Collector to not use those results and thus simulates a default application run where 
synchronization is only done at the start and end. 

This can be overridden by setting the TIMER-SKIP configuration option or VT_TIMER_SKIP environment 
variable to a small integer value: it chooses how often the result of a VT_timesync() is ignored before 
using a sample for non-linear clock correction. The skipped samples serve as checks that the interpolation 
is sound. 

In the following figures the test program was run using the CPU timer source, with a total runtime of 10 
minutes and skipping 5 samples: 
bash$ VT_TIMER_SKIP=5 VT_TIMER=CPU mpirun -np 4 timertest 600 
 
... 
 
[0 (node0)] performance: 115750510 calls in 5.000s wall 
 
clock time = 43.197ns/call = 23149574 calls/s 
 
... 
 
0. recording messages 0 <-> 1... 
0. recording messages 0 <-> 2... 
0. recording messages 0 <-> 3... 
0. recording messages 1 <-> 2... 
0. recording messages 1 <-> 3... 
0. recording messages 2 <-> 3... 
1. recording messages 0 <-> 1... 
... 
maximum clock offset during run: 
0 <-> 1 -1.031us (latency 6.756us) 

The application run in Figure 5.1 below shows that in general Intel® Trace Collector managed to keep the 
test results inside a range of plus-minus 1μs although it did not use all the information collected with 
VT_timesync(). The clock transformation function in Figure 5.2 is non-linear for all three child processes 
and interpolates the intermediate samples well. Using a linear interpolation between start and end would 
have led to deviations in the middle of more than 16 μs. Also, the constrained spline interpolation is 
superior compared to a simple linear interpolation between the sample points (Figure 5.3). 
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Figure 5.1 CPU Timer: Application Run with Non-linear Clock Correction 

 

gettimeofday/_ftime 
gettimeofday is the default timer on Linux* OS with _ftime being the equivalent on Microsoft* 
Windows* OS. Its API limits the clock resolution to 1μs, but depending on which timer the OS actually uses 
the clock resolution may be much lower (_ftime usually shows a resolution of only 1 millisecond). It is 
implemented as a system call; therefore it has a higher overhead than other timers. 

In theory the advantage of this call is that the OS can make better use of the available hardware, so this 
timer should be stable over time even if NTP is not running. However, Figure 5.4 shows that in practice at 
least on that system quite a high deviation between different nodes occurred during the run. 

If NTP is running, then the clock of each node might be modified by the NTP daemon in a non-linear way. 
NTP should not cause jumps, only accelerate or slow down the system time. 
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Figure 5.2 CPU Timer: clock Transformation and the Sample Points It Is Based on 

 
However, even decreasing system time stamps have been observed on some systems. This may or may not 
have been due to NTP. 

Due to the clock synchronization at runtime enabling NTP did not make the result worse than it is without 
NTP (Figure 5.5). However, NTP alone without the additional intermediate synchronization would have led 
to deviations of nearly 70 μs. 

So the recommendation is to enable NTP, but intermediate clock synchronization by Intel® Trace Collector 
is still needed to achieve good results. 

QueryPerformanceCounter 
On Microsoft* Windows* OS, Intel® Trace Collector uses QueryPerformanceCounter as the default 
timer. As a system function it comes with the same side-effects as _ftime but has a higher resolution of 
around 1 μs. 

CPU Cycle Counter 
This is a high-resolution counter inside the CPU which counts CPU cycles. This counter is called Timer 
Stamp Counter (TSC) on x86/Intel®64 architectures. It can be read through an assembler instruction, so the 
overhead is much lower than gettimeofday(). On the other hand, these counters were never meant to 
measure long time intervals, so the clock speed also varies a lot, as seen earlier in Figure 5.2. 
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Figure 5.3 CPU Timer: Error with Linear (above x-axis) and Non-linear Interpolation (below) 

 
Additional complications are: 

Multi-CPU machines: the counter is CPU-specific, so if threads migrate from one CPU to another the clock 
that Intel® Trace Collector reads might jump arbitrarily. Intel® Trace Collector cannot compensate this as it 
would have to identify the current CPU and read the register in one atomic operation, which cannot be 
done from user space without considerable overhead. 

CPU cycle counters might still be useful on multi-CPU systems: Linux* OS tries to set the registers of all 
CPUs to the same value when it boots. If all CPUs receive their clock pulse from the same source their 
counters do not drift apart later on and it does not matter on which CPU a thread reads the CPU register, 
the value will be the same one each. 

This problem could be addressed by locking threads onto a specific CPU, but that could have an adverse 
effect on application performance and thus is not supported by Intel® Trace Collector itself. If done by the 
application or some other component, then care has to be taken that all threads in a process run on the 
same CPU, including those created by Intel® Trace Collector itself. If the application already is single-
threaded, then the additional Intel® Trace Collector threads could be disabled to avoid this complication. 

Frequency scaling: power-saving mode might lead to a change in the frequency of the cycle count register 
during the run and thus a non-linear clock drift. Machines meant for HPC probably do not support 
frequency scaling or will not enter power-saving mode. Even then, on Intel CPUs, TSC often continues to 
run at the original frequency. 
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Figure 5.4 getimeofday() without NTP 

 

See Also 
MEM-FLUSHBLOCKS 
Recording OS Counters 

Normalized CPU Cycle Counter 
The CPU timer described in CPU Cycle Counter is applicable for homogenous systems only. Specifically, 
the CPU frequency should match across the systems. 

For heterogeneous systems with different CPU frequencies, a special Normalized CPU timer 
(VT_TIMER=CPU_Norm) can be used. This timer is based on the Timer Stamp Counter (TSC) CPU ticks as 
well as the original CPU timer (VT_TIMER=CPU). The normalized timer converts the local CPU ticks into 
microseconds on the fly to allow usage of TSC on heterogeneous systems. 

MPI_Wtime() 
This timer is provided by the MPI implementation. In general this is simply a wrapper around 
gettimeofday() and then using it instead of gettimeofday() only has disadvantages: with 
gettimeofday() Intel® Trace Collector knows that processes running on the same node share the same 
clock and thus does not synchronize between them. The same information cannot be obtained through 
the MPI API and thus Intel® Trace Collector is conservative and assumes that clock synchronization is 
needed. This can be overridden with the SYNCED-HOST configuration option. Another disadvantage is 
increased overhead and potentially implementation errors in MPI. 

If the MPI has access to a better timer source (for example a global clock in the underlying communication 
hardware), then using this timer would be advantageous. 
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High Precision Event Timers 
This is a hardware timer source designed by Intel as replacement for the real time clock (RTC) hardware 
commonly found in PC boards. Availability and support for it in BIOS and OS is still very limited, therefore 
Intel® Trace Collector does not support it yet. 

Figure 5.5 getimeofday() with NTP 

 

POSIX* clock_gettime 
This is another API specified by the Single Unix Specification and POSIX*. It offers a monotonic system 
clock which is not affected (for good or bad) by NTP, but the current implementation in Linux*/glibc does 
not provide better timing through this API than through gettimeofday(). Intel® Trace Collector does not 
support this API. 

3.6. Secure Loading of Dynamic Link Libraries* on 
Windows* OS 
To improve security protections on Microsoft Windows* OS, Intel® Trace Collector provides the enhanced 
security options for the loading of Dynamic-Link Libraries*. You can enable the secure DLL loading mode, 
as well as define a set of directories in which the library will attempt to locate an external DLL. 

The security options are placed in the HKEY_LOCAL_MACHINE\Software\Intel\ITAC protected 
Windows* registry key. The location prevents the options from being changed with non-administrative 
privileges. 

3.6.1. SecureDynamicLibraryLoading  
Select the secure DLL loading mode. 

Syntax 
SecureDynamicLibraryLoading=<value> 
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Arguments 

<value>  Binary indicator 

enable | yes | on | 1 Enable the secure DLL loading mode  

disable | no | off | 0 Disable the secure DLL loading mode. This is the default value 

Description 
Use HKEY_LOCAL_MACHINE\Software\Intel\ITAC registry key to define the 
SecureDynamicLibraryLoading registry entry. Set this entry to enable the secure DLL loading mode. 

3.6.2. VT_MPI_DLL and VT_FMPI_DLL 
Specify the MPI library to be used in the secure DLL loading mode. 

Syntax 
VT_MPI_DLL=<library> 

VT_FMPI_DLL=<library> 

Arguments 

<library> Specify the name of the library to be loaded 

Description 
In the secure DLL loading mode, the library changes the default-defined set of directories to locate DLLs. 
Therefore, the current working directory and the directories that are listed in the PATH environment 
variable may be ignored.  To select a specific MPI library to be loaded, define the VT_MPI_DLL and 
VT_FMPI_DLL entries of the HKEY_LOCAL_MACHINE\Software\Intel\ITAC registry key. Specify the 
full path to the MPI library. 

NOTE 
The VT_MPI_DLL and VT_FMPI_DLL environment variables have no effect in the secure DLL loading 
mode. 

3.6.3. SecurePath 
Specify a set of directories to locate an external DLL. 

Syntax 
SecurePath=<path>[;<path>[...]] 

Arguments 

<path> Specify paths to directories. The paths must be separated with a 
semicolon ;. 

Description 
Use HKEY_LOCAL_MACHINE\Software\Intel\ITAC registry key to define the SecurePath registry 
entry. Set this entry to specify a set of directories to locate loaded DLLs in the secure DLL loading mode. 
Use a safe set of directories instead of some publicly writable directories to avoid insecure library loading. 
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NOTE 
Use this option if the static tracing library VT*.lib is linked into the executable or if the tracing library is 
unable to load a DLL in the secure DLL loading mode. The option has no effect if the secure DLL loading 
mode is turned off. 
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4. Appendix A Copyright and Licenses 
The MPI datatype hash code was developed by Julien Langou and George Bosilca, University of 
Tennessee, and is used with permission under the following license: 
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved. 
$COPYRIGHT$ 
Additional copyrights may follow 
$HEADER$ 
Redistribution and use in source and binary forms, with or without modification, 
are permitted provided that the following conditions are met: 
- Redistributions of source code must retain the above copyright notice, this 
list of conditions and the following disclaimer. 
- Redistributions in binary form must reproduce the above copyright notice, this 
list of conditions and the following disclaimer listed in this license in the 
documentation and/or other materials provided with the distribution. 
- Neither the name of the copyright holders nor the names of its contributors 
may be used to endorse or promote products derived from this software without 
specific prior written permission. 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS  
 AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,  
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY  
 AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL  
 THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,  
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT  
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,  
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY  
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING  
 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  
 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
  

 
[1] This is similar to the method described in "Collective Error Detection for MPI Collective Operations", 
Chris Falzone, Anthony Chan, Ewing Lusk, William Gropp, 
http://www.mcs.anl.gov/~gropp/bib/papers/2005/collective-checking.pdf 

[2] "Hash functions for MPI datatypes", Julien Langou, George Bosilca, Graham Fagg, Jack Dongarra, 
http://www.cs.utk.edu/~library/TechReports/2005/ut-cs-05-552.pdf 
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	Syntax
	Variable
	Default
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	Syntax
	Variable
	Default
	Description
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	Variable
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	Variable
	Description
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	Default
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	Syntax
	Variable
	Default
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	Syntax
	Variable
	Default
	Description
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	Default
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	Syntax
	Variable
	Description

	OS-COUNTER-DELAY
	Syntax
	Variable
	Default
	Description
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	Syntax
	Variable
	Default
	Description
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	Syntax
	Variable
	Default
	Description
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	Syntax
	Variable
	Default
	Description

	PLUGIN
	Syntax
	Variable
	Description

	PROCESS
	Syntax
	Variable
	Default
	Description

	PROGNAME
	Syntax
	Variable
	Description
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	Syntax
	Variable
	Description
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	Syntax
	Variable
	Default
	Description
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	Syntax
	Variable
	Default
	Description
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	Default
	Description
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	Default
	Description
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	Default
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	Default
	Description
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	Default
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	Default
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	Default
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	Default
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	TIME-WINDOWS (Experimental)
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	Variable
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	TIMER
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	Variable
	Default
	Description
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	Variable
	Description
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	Syntax
	Variable
	Default
	Description

	UNIFY-GROUPS
	Syntax
	Variable
	Default
	Description

	UNIFY-SCLS
	Syntax
	Variable
	Default
	Description

	UNIFY-SYMBOLS
	Syntax
	Variable
	Default
	Description

	VERBOSE
	Syntax
	Variable
	Default
	Description
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