

Tutorial: Analyzing MPI Applications with
MPI Performance Snapshot

MPI Performance Snapshot

© 2015 Intel Corporation

 Tutorial: Analyzing MPI Applications with MPI Performance Snapshot

2

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted
by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Intel, the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© 2015 Intel Corporation.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Overview

MPI Performance Snapshot 3

Contents
1. Overview ...4

1.1. Prerequisites .. 4

2. Analyzing an MPI Application ...5
2.1. Preparing for Analysis ... 5
2.2. Viewing the Application Statistics .. 5

2.2.1. Viewing the Summary Page .. 5
2.2.2. Viewing the Function Summary .. 6

2.3. Resolving the Issues ... 7
2.3.1. Optimizing the SendRecv function .. 7
2.3.2. Optimizing the Allreduce function .. 7

2.4. Viewing the Results .. 7

3. Key Terms ...9

 Tutorial: Analyzing MPI Applications with MPI Performance Snapshot

4

1. Overview
MPI Performance Snapshot is a scalable lightweight performance tool for MPI applications. It collects
the MPI application statistics, such as communication, activity, load balance, and presents it in an easy-
to-read format. Use the collected information for in-depth analysis of the application scalability and
performance.

About This
Tutorial

This tutorial demonstrates an end-to-end workflow you can ultimately apply to
your own applications:

• Detect performance issues in your application

• Find communication hotspots

• Review your application

This tutorial uses the poisson application as an example. The application source
code is available at:

<installdir>/examples/poisson

Estimated
Duration

10-15 minutes.

Learning
Objectives

After you complete this tutorial, you should be able to:

• Conduct the quick analysis of your application using MPI Performance
Snapshot

• Improve your application performance

More Resources Learn more about MPI Performance Snapshot in the MPI Performance Snapshot
User's Guide

1.1. Prerequisites
Before you start using MPI Performance Snapshot, make sure to install the necessary software and
libraries and set up the environment:

1. Install the Intel® Fortran Compiler version 15.0.1 or higher and set up the environment:

$ source <compiler_installdir>/bin/compilervars.sh

2. Install the Intel® MPI Library version 5.0.3 or higher and set up the environment:

$ source <IMPI_installdir>/intel64/bin/mpivars.sh

3. Set up the environment for MPI Performance Snapshot, source the script:

$ source <ITAC_installdir>/bin/mpsvars.sh

Analyzing an MPI Application

MPI Performance Snapshot 5

2. Analyzing an MPI Application
Step 1:

Prepare for analysis
Build an application and generate statistics files.

Step 2:
Detect performance issues

• See the Summary Page

• See the Function Summary

Step 3:
Resolve the issues

• Replace the blocking SendRecv function with the non-blocking
Icomm.

• Tune the Allreduce function

Step 4:
Check your work

Rebuild the application and view the results.

2.1. Preparing for Analysis
Complete the steps described in the Prerequisites section.

Copy the contents <installdir>/examples/poisson into your working directory. Edit the inp file
as follows:

3200

2 16

Build the application by running the make command and run the application on two nodes of the
cluster:

$ make

$ mpirun -mps -n 32 -hosts <node1>,<node2> ./poisson

Two statistics files will be generated: stats.txt and app_stat.txt.

2.2. Viewing the Application Statistics
2.2.1. Viewing the Summary Page
Display the application summary by processing the generated files:

$ mps ./stats.txt ./app_stat.txt

The output will look as follows:
Summary information
 Application : ./poisson
 Number of ranks: 32

 Tutorial: Analyzing MPI Applications with MPI Performance Snapshot

6

 Used statistics: app_stat.txt, stats.txt
|
 WallClock time : 6.37 sec
| Total application lifetime. The time is elapsed time for the slowest process.
| This metric is the sum of the MPI Time and the Computation time below.
|
 MPI Time: 2.36 sec 37.56%
| Time spent inside the MPI library. High values are usually bad.
| This value is HIGH. The application is Communication-bound.
| This might be caused by:
| - High wait times inside the library - see the MPI Imbalance metric below.
| - Active communications - see the diagrams 'MPI Time per Rank' (key '-m'
| or '-m -D' for per MPI-function details) & 'Collective Operations Time
| per Rank' (key '-t' or '-t -D' for per MPI-function details).
| - Unoptimized settings of the MPI library. You can tune Intel(R) MPI
| Library for your application and cluster configuration using the mpitune
| utility available as part of the library package.
|
 MPI Imbalance: 2.34 sec 37.24%
| Mean unproductive wait time per-process spent in the MPI library calls
| when a process is waiting for data. This time is part of the MPI time
| above. High values are usually bad.
| This value is HIGH. The application workload is NOT well balanced
| between MPI ranks.
| For more details about the MPI communication scheme use Intel(R) Trace
| Analyzer and Collector available as part of Intel(R) Parallel Studio
| XE Cluster Edition.
...

We can observe that MPI Time and MPI Imbalance Time values are very close, which indicates that the
application does little productive work and should be optimized.

The next step is to see the function summary to detect the most time-consuming functions.

Key Terms
MPI Imbalance

2.2.2. Viewing the Function Summary
To see the function summary, process the statistics files with the -f option:

$ mps -f ./stats.txt ./app_stat.txt

The output may look as follows:
| Function summary for all ranks

|---
| Function Time(sec) Time(%) Volume(MB) Volume(%) Calls

|---

 SendRecv 50.37 59.96 39.06 99.96 9200

 Allreduce 24.20 28.81 0.01 0.03 1600
 Init 8.83 10.51 0.00 0.00 32

 Bcast 0.55 0.66 0.00 0.00 32

 Gather 0.05 0.06 0.00 0.01 32

Analyzing an MPI Application

MPI Performance Snapshot 7

 Finalize 0.00 0.00 0.00 0.00 32
|===

| TOTAL 84.01 100.00 39.08 100.00 10928

We can observe that the SendRecv and Allreduce functions are potential hotspots and should be
optimized.

Key Terms
Hotspot

2.3. Resolving the Issues
2.3.1. Optimizing the SendRecv function
To improve the performance of the poisson application we can replace the blocking SendRecv
function with the non-blocking Icomm function.

The source code with the necessary changes is also available at the poisson folder. Rename the
pardat.f90_icomm file into pardat.f90

2.3.2. Optimizing the Allreduce function
We can tune the Allreduce function with the Intel® MPI Library parameters. To do this set the suitable
value for the I_MPI_ADJUST_ALLREDUCE environment variable. The poisson application shows the
best results with the value 2. However, you should check manually which value suits best for your
application and your configuration.

2.4. Viewing the Results
To view the results, rebuild your application, run it and process the generated statistics files once again.

As a result of the optimization, we get the following:

• application lifetime reduced from 6.37 seconds to 5.72 seconds (~9%)
• MPI time rate reduced from 37.56% to 30.28% (7.28%)

See the diagrams below.
Summary information
Application : ./poisson
Number of ranks: 32
Used statistics: app_stat.txt, stats.txt
WallClock time : 5.72 sec
Total application lifetime. The time is elapsed time for the slowest process.
This metric is the sum of the MPI Time and the Computation time below.
 MPI Time: 1.70 sec 30.28%
| Time spent inside the MPI library. High values are usually bad.
| This value is HIGH. The application is Communication-bound.

 Tutorial: Analyzing MPI Applications with MPI Performance Snapshot

8

| This might be caused by:
| - High wait times inside the library - see the MPI Imbalance metric below.
| - Active communications - see the diagrams 'MPI Time per Rank' (key '-m'
| or '-m -D' for per MPI-function details) & 'Collective Operations Time
| per Rank' (key '-t' or '-t -D' for per MPI-function details).
| - Unoptimized settings of the MPI library. You can tune Intel(R) MPI
| Library for your application and cluster configuration using the mpitune
| utility available as part of the library package.
|
 MPI Imbalance: 1.66 sec 29.49%
| Mean unproductive wait time per-process spent in the MPI library calls
| when a process is waiting for data. This time is part of the MPI time
| above. High values are usually bad.
| This value is HIGH. The application workload is NOT well balanced
| between MPI ranks.
| For more details about the MPI communication scheme use Intel(R) Trace
| Analyzer and Collector available as part of Intel(R) Parallel Studio
| XE Cluster Edition.

| Function summary for all ranks

|---

| Function Time(sec) Time(%) Volume(MB) Volume(%) Calls

|---
 Recv 26.94 42.94 138.53 78.00 9200

 Allreduce 25.76 41.06 0.01 0.01 1600

 Init 9.06 14.44 0.00 0.00 32

 Bcast 0.61 0.97 0.00 0.00 32
 Send 0.31 0.49 39.06 21.99 9200

 Gather 0.04 0.07 0.00 0.00 32

| [skipped 2 lines]

|===
| TOTAL 62.74 100.00 177.60 100.00 23328

Key Terms

MPI Performance Snapshot 9

3. Key Terms
MPI Imbalance: The unproductive time a process spends in the MPI calls while waiting for data.

Hotspot: A section of code that took a long time to execute. Some hotspots may indicate bottlenecks
and can be removed, while other hotspots inevitably take a long time to execute due to their nature.

	Tutorial: Analyzing MPI Applications with MPI Performance Snapshot

	Legal Information
	1. Overview
	1.1. Prerequisites

	2. Analyzing an MPI Application
	2.1. Preparing for Analysis
	2.2. Viewing the Application Statistics
	2.2.1. Viewing the Summary Page
	Key Terms

	Viewing the Function Summary
	Key Terms

	2.3. Resolving the Issues
	2.3.1. Optimizing the SendRecv function
	2.3.2. Optimizing the Allreduce function

	2.4. Viewing the Results

	3. Key Terms

