
Intel® Cluster CheckerUser’sGuide

Version 3.0.1
August 3, 2015

3

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CON-
DITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WAR-
RANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUD-
ING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICU-
LAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A ”Mission Critical Application” is any application in which failure of the Intel
Product could result, directly or indirectly, in personal injury or death. SHOULD
YOUPURCHASEORUSE INTEL’S PRODUCTS FORANY SUCHMISSIONCRIT-
ICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORSANDAFFILIATES, ANDTHEDIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS
COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF
SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR
WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time,
without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked ”reserved” or ”undefined”. Intel reserves these
for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is
subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors
known as errata which may cause the product to deviate from published speci-
fications. Current characterized errata are available on request.

Requires a system with a 64-bit enabled processor, chipset, BIOS and software.
Performance will vary depending on the specific hardware and software you use.
Consult your PCmanufacturer for more information. For more information, visit
http://www.intel.com/info/em64t

Contact your local Intel sales office or your distributor to obtain the latest spec-
ifications and before placing your product order.

Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725,
or go to: http://www.intel.com/design/literature.htm

Intel, the Intel logo, the Intel Inside logo, Xeon, and Xeon Phi are trademarks of
Intel Corporation in the U.S. and/or other countries.

4

Optimization Notice

Intel compilers may or may not optimize to the same degree for non-Intel mi-
croprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or ef-
fectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microar-
chitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation. All rights reserved.

5

Contents

1 Introduction 6
1.1 What is Intel® Cluster Checker? 6
1.2 Key Concepts . 6

2 Getting Started 7

3 Data Collection 8
3.1 Overview . 8
3.2 Running clck-collect . 8
3.3 Selecting Nodes . 8

3.3.1 Node Roles . 9
3.3.2 Subclusters . 9

3.4 Selecting Data Providers . 10
3.5 Other Configuration Options . 10
3.6 Asynchronous Data Collection . 11

3.6.1 Setting Up the Daemons 11
3.6.1.1 Intel® Manycore Platform Software Stack . . . 11
3.6.1.2 RedHat Enterprise Linux* 6 and derivatives . . . 11
3.6.1.3 SUSE Linux Enterprise Server* 11 and derivatives 12
3.6.1.4 systemd Based Linux* Distributions 12

3.6.2 Discovery and Data Aggregation 12
3.6.3 Ad Hoc Clusters . 13
3.6.4 Performance Impact and Sleep Mode 13

3.7 Data Collection Use Cases . 13
3.7.1 Completely On-Demand Data Collection 13
3.7.2 On-Demand Data Collection with a Shared Database . . . 13
3.7.3 Completely Asynchronous Data Collection 14

4 Analysis 15
4.1 Overview . 15
4.2 Running clck-analyze . 15
4.3 Selecting Nodes . 16
4.4 Configuration Options . 16
4.5 Mode Selection . 17
4.6 Check Selection . 17
4.7 Filtering . 18
4.8 Suppressions . 18

A Database Schema 20

B List of Checks 22

6

Chapter 1

Introduction

1.1 What is Intel® Cluster Checker?

Intel® Cluster Checker verifies the configuration and performance of Linux-
based clusters and checks compliance with the Intel® Cluster Ready architecture
specification. If issues are found, Intel® Cluster Checker diagnoses the problems
and may provide recommendations on how to repair the cluster.

This guide provides step-by-step instructions for using the tool.
Further support information can be found at http://www.intel.com/go/

cluster.

1.2 Key Concepts

Intel® Cluster Checker operates on similar principles as a medical diagnosis. In
other words, Intel® Cluster Checker is a doctor for clusters. The key concep-
tional ideas are signs and diagnoses. Signs are objective indicators based on ob-
servations from the cluster. For example, a sign is created when the performance
of a node is less than expected or a configuration setting is incorrect. A sign is
roughly analogous to a symptom in a medical setting. Intel® Cluster Checker 2.x transition note:

Sub-tests are roughly analogous to signs, but
there is no equivalent to diagnoses.

A diagnosis combines one or more signs to identify the root cause of an issue.
For example, a diagnosis is created when high MPI latency measurements are
associated with Ethernet configuration settings that enable interrupt coalescing.
The diagnosis assigns the root cause of the former to the latter. Intel® Cluster Checker 2.x transition note:

The confidence and severity level of all re-
ported issues are implicitly 100%.

Each sign and diagnosis has corresponding severity and confidence levels
that range from 0 to 100 percent. Higher values indicate the item is more serious
or has a higher confidence.

http://www.intel.com/go/cluster
http://www.intel.com/go/cluster

7

Chapter 2

Getting Started

Before using Intel® Cluster Checker for the first time, the runtime environ-
ment must be setup. Two files are included to setup the runtime environment,
clckvars.sh for shells with Bourne* syntax and clckvars.csh for shells with
csh syntax. Source the appropriate file from the command line, for example: Tip: To avoid having to run this command

for each new shell, add it to your shell ini-
tialization file, e.g., .bashrc or .cshrc.source /opt/intel/clck/3.0.1/bin/clckvars.sh

Next, create a nodefile containing the list of compute node hostnames or IP
addresses, one per line. For example, if the cluster consists of a dedicated head
node named front-end and four compute nodes named node1, node2, node3,
and node4, the corresponding nodefile would contain:

node1
node2
node3
node4

The preceding two steps are one time prerequisites, unless nodes are added
to or removed from the cluster. With this out of the way, using Intel® Cluster
Checker is a three step process: Intel® Cluster Checker 2.x transition note:

Steps 1 and 2 were previously a single step.
Splitting data collection and analysis into
separate steps avoids unnecessary and dupli-
cate data collection from problem-free com-
ponents / nodes.

Intel® Cluster Checker 2.x transition note:
The clck tool is included for limited com-
mand line compatibility with Intel® Cluster
Checker 2.x. This tool combines these two
steps and automatically runs both data col-
lection and analysis. In most cases, using the
separate clck-collect and clck-analyze
programs is recommended. More informa-
tion can be obtained by running clck --
help.

1. Collect data
clck-collect -a -f nodefile

2. Analyze the data
clck-analyze

3. Resolve any issues reported in step 2 and repeat steps 1 and 2 until no
issues are reported.

Tip: Note that it is usually only necessary to
recollect data for items where an issue was
detected.

Data collection is described further in chapter 3 and analysis in chapter 4.

8

Chapter 3

Data Collection

3.1 Overview

Before Intel® Cluster Checker can identify issues, the “vital signs” of the cluster
must first be collected. Data can be collected either on-demand or asynchronously.
Several use cases are described in section 3.7. In both modes, the collected data
is stored in a database and the data to be collected are defined by the same set of
data providers. Intel® Cluster Checker 2.x transition note:

While the Intel® Cluster Checker version 2
collected data is stored in a database, the
database is not used for analysis. Fresh data
is collected on every run of the tool.

With the exception of sections 3.6 and 3.7, this chapter assumes that on-
demand data collection is used.

3.2 Running clck-collect

In on-demand mode, data is only collected upon request. The clck-collect
program is the tool used to invoke the data collection.

A typical invocation of clck-collect is:

clck-collect -a -f nodefile
Tip: To collect data on a single node, use
a nodefile containing a single line with the
node hostname.

This command includes the two elements required at a minimum for on-
demand data collection, the set of data providers and the list of nodes. The -a
command line option specifies that all data providers should be run and the -f
option specifies the file containing the list of nodes.

3.3 Selecting Nodes

The nodefile contains a list of cluster node hostnames or IP addresses, one per
line.

For compute nodes, the nodefile is a simple list of nodes. For instance, the
nodefile provided by a cluster resource manager typically contains just compute
nodes and may be used as-is. Intel® Cluster Checker 2.x transition note:

Previous nodefiles are compatible. The type
annotation is considered synonymous with
role, and the arch and group annotations are
ignored.

Intel® Xeon Phi™ coprocessors should be
included in the nodefile as “independent”
nodes.

The nodefile is specified using the following clck-collect command line
option.

-f file / --nodefile file

Use the specified file for the list of nodes on which to collect data.

However, in some cases, nodes in the nodefile need to be annotated. The
symbol may be used to introduce comments in a nodefile. Annotations are
specially formatted comments containing an annotation keyword following by
a colon and a value. Annotations may alter the data collection behavior.

Data Collection 9

3.3.1 Node Roles
The role annotation keyword is used to assign a node to one or more roles. A
role describes the intended functionality of a node, e.g., a node is a compute node.
If no role is explicitly assigned, by default a node is assumed to be a compute
node. Valid node role values are given in Table 3.1. The role annotation may be
repeated to assign a node multiple roles.

For example, the following nodefile defines 4 nodes: node1 is a head and
compute node, node2, node3, and node4 are compute nodes, and node5 is dis-
abled.

node1 # role: head role: compute
node2 # role: compute
node3 # implicitly assumed to be a compute node
node4
#node5

Some data providers will only run on nodes with certain roles, e.g., data
providers that measure performance typically only run on compute or enhanced
nodes.

Role Description
boot Provides software imaging / provisioning capabilities
compute Is a compute resource (mutually exclusive with

enhanced)
enhanced Provides enhanced compute resources, e.g., contains

additional memory (mutually exclusive with compute)
external Provides an external network interface
head Alias for the union of boot, external, job_schedule, login,

network_address, and storage
job_schedule Provides resource manager / job scheduling capabilities
login Is an interactive login system
network_address Provides network address to the cluster, e.g., DHCP
storage Provides network storage to the cluster, e.g., NFS

Table 3.1 – Node Roles

3.3.2 Subclusters
Some clusters contain groups of nodes, or subclusters, that are homogeneous
within the subcluster but differ from other subclusters. For example, one sub-
cluster may be connected with InfiniBand* while the rest of the cluster uses Eth-
ernet*.

The subcluster annotation keyword is used to assign a node to a subclus-
ter. A node may only belong to a single subcluster. If no subcluster is explicitly
assigned, by default the node is placed into the the default subcluster. The sub-
cluster name is an arbitrary string.

For example, the following nodefile defines 2 subclusters, each with 4 com-
pute nodes:

node1 # subcluster: eth
node2 # subcluster: eth
node3 # subcluster: eth
node4 # subcluster: eth
node5 # subcluster: ib
node6 # subcluster: ib
node7 # subcluster: ib
node8 # subcluster: ib

By default, cluster data providers will not span subclusters. To override this
behavior, use the following clck-collect command line option:

10 Data Collection

-S / --ignore-subclusters
Ignore subclusters when running cluster data providers, i.e., cluster data
providers will span subclusters. The default is not to span subclusters.

3.4 Selecting Data Providers

Several clck-collect command line options available to specify the data providers
to run, including:

-a / --all
Run all data providers in the default data provider directory (/opt/intel/
clck/3.0.1/provider/etc).

-m name / --module name

Run the individual data provider matching the specified name. For ex-
ample, clck-collect -m uname -f nodefile runs the uname provider
from the default data provider directory (/opt/intel/clck/3.0.1/provider/
etc/uname.xml).

-p file / --provider file

Run the individual data provider defined by the specified file. For ex-
ample, clckd-collect -p $HOME/myprovider.xml -f nodefile runs
the provider defined by myprovider.xml.

-s name / --set name Tip: To check a single aspect of a clus-
ter, combine sets with the ability to exclu-
sively run an analysis check (section 4.6).
E.g., clck-collect -f nodefile -s foo
&& clck-analyze -I foo, where foo is
the name of the check.

Run the set of data providers matching the specified name. The sets are
defined in /opt/intel/clck/3.0.1/provider/sets.xml. For example,
clck-collect -s benchmarks -f nodefile runs all the data providers
that use benchmarks to measure performance. Sets are pre-defined for
each analysis check to collect all the data necessary for the analysis.

Any of these options may be combined to run the union of the specified data
providers.

3.5 Other Configuration Options

Other command line configuration options supported by clck-collect include:

-c file / --config file

Use the specified configuration file. The default is /opt/intel/clck/3.
0.1/etc/clckd.xml.

-l level / --log-level level

Select the output level. Recognized levels, in decreasing order, are alert,
critical, error, warning, notice, info, and debug. The default value
is info.

-z

This option disables the embedded functionality that directly writes the
collected data to the database. Use this option onlywhen the clck-serverd
service is running, otherwise the data may be lost! See section 3.7 for more
information on when this option should, and should not, be used.

In addition to the options already described, the data collection behavior
can also be customized via a configuration file. The default configuration file is
/opt/intel/clck/3.0.1/etc/clckd.xml. The configuration file options are
described further in the configuration file itself.

Data Collection 11

3.6 Asynchronous Data Collection

In addition to on-demand data collection, Intel® Cluster Checker also supports
asynchronous data collection. In asynchronous mode, a service runs in the back-
ground on all nodes that wakes up periodically to collect data and populate the
database all without any manual intervention. Asynchronous data collection is
not enabled by default. Tip: All nodes that have the compute role

should run clckd, e.g., a head node that is
also used as a compute node should run both
daemons.

The service takes the form of two daemons, clckd and clck-serverd. clckd
runs on each compute node to run the data providers. clck-serverd aggre-
gates all the data collected by the clckd daemons into a central database. Unlike
clckd, only one instance of clck-serverd should be running, typically on the
head node.

3.6.1 Setting Up the Daemons
Tip: If on-demand data collection with a
shared database is desired (see section 3.7),
then the user can be a local user on the
head node without ssh access to the compute
nodes.

In order to run continuously in the background, the daemons need to be con-
figured by a privileged user to start automatically when the nodes boot. This
is a one-time setup process. The precise steps vary depending on the Linux*
distribution, but the general process is the same.

Tip: It is highly recommended not to run the
daemons as a privileged user.1. Create a cluster user dedicated to running the daemons. By default, the

provided service start-up files assume the user is named clck. If a different
user name is used, then the service start-up files will need to be edited.
Regardless of the name, the user needs to be able to ssh from one node to
another without a password.

2. Copy the service start-up files from the appropriate Linux* distribution
sub-directory of /opt/intel/clck/3.0.1/extra to the corresponding
system directory.

3. Use the appropriate commands for the Linux* distribution to enable the
services.

4. Use the appropriate commands for the Linux* distribution to start the dae-
mons.

The following subsections describe these steps more precisely for particular
Linux* distributions. These steps can only be performed by a privileged user.

3.6.1.1 Intel® Manycore Platform Software Stack

The files corresponding to this Linux* distribution are located in /opt/intel/
clck/3.0.1/extra/mpss.

1. Copy /opt/intel/clck/3.0.1/extra/mpss/etc/init.d/clckd to /etc/
init.d/clckd

2. If necessary, edit /etc/init.d/clckd and /etc/init.d/clck-serverd
to change the default user and/or install path.

3. /sbin/chkconfig --add clckd

4. /sbin/service clckd start

3.6.1.2 RedHat Enterprise Linux* 6 and derivatives

The files corresponding to this Linux* distribution are located in /opt/intel/
clck/3.0.1/extra/rhel6. Perform the following steps on every compute node.

1. Copy /opt/intel/clck/3.0.1/extra/rhel6/etc/init.d/clckd to /etc/
init.d/clckd

12 Data Collection

2. If necessary, edit /etc/init.d/clckd to change the default user and/or
install path.

3. /sbin/chkconfig --add clckd

4. /sbin/service clckd start

On the head node only, repeat the above steps, but substituting clck-serverd
for clckd.

3.6.1.3 SUSE Linux Enterprise Server* 11 and derivatives

The files corresponding to this Linux* distribution are located in /opt/intel/
clck/3.0.1/extra/suse. Perform the following steps on every compute node.

1. Copy /opt/intel/clck/3.0.1/extra/suse/etc/init.d/clckd to /etc/
init.d/clckd

2. If necessary, edit /etc/init.d/clckd to change the default user and/or
install path.

3. /sbin/chkconfig --add clckd

4. /sbin/service clckd start

On the head node only, repeat the above steps, but substituting clck-serverd
for clckd.

3.6.1.4 systemd Based Linux* Distributions

The files for Linux* distributions based on systemd are located in /opt/intel/
clck/3.0.1/extra/sysd. Linux* distributions based on systemd include Red-
Hat Enterprise Linux* 7 and SUSE Linux Enterprise Server* 12. Perform the fol-
lowing steps on every compute node.

1. Copy /opt/intel/clck/3.0.1/extra/sysd/etc/systemd/system/clckd.
service to /etc/systemd/system/clckd.service

2. If necessary, edit /etc/systemd/system/clckd.service to change the
default user and/or install path.

3. /usr/bin/systemctl enable clckd.service

4. /usr/bin/systemctl start clckd.service

On the head node only, repeat the above steps, but substituting clck-serverd
for clckd.

3.6.2 Discovery and Data Aggregation
Tip: Not all clusters are configured to sup-
port UDP broadcast. In this case, set the
<accumulate_host> option in the configu-
ration file to the hostname of system run-
ning clck-serverd and set the <enable_-
discovery> option to false.

By default, clck-serverd continuously sends UDP broadcastmessages announc-
ing itself as the aggregation point for data. As long as clckd is also configured to
listen to the same broadcast, all collected data will be sent to clck-serverd us-
ing the connection information contained in the broadcast. Alternatively, clckd
can be manually configured with the hostname and port of the clck-serverd
accumulation service.

Data Collection 13

3.6.3 Ad Hoc Clusters

Most data providers collect information from a single node. The collected in-
formation pertains to the host on which the data provider was run. However,
data providers that collect information such as network bandwidth and latency
require multiple nodes. In order to run these cluster data providers in asyn-
chronous mode, an ad hoc cluster needs to be formed. Tip: Ad hoc clusters are the source of the

requirement in section 3.6.1 that the clck
user must a cluster user with shared ssh
keys. If the ad hoc cluster behavior is not
desired, it can be disabled by setting the
<enable_adhoc_clusters> option in the
configuration file to false, and a local user
can be used to run clckd. On-demand
data collection should be used to gather the
still necessary cluster data provider infor-
mation, e.g., clck-collect -s cluster -
f nodefile.

A broadcast method, similar to the discovery protocol described in section
3.6.2, is used to form ad hoc clusters of two or more nodes. One clckd daemon
initiates the request for creation of an ad hoc cluster and other, idle clckd dae-
mons decide whether to join the ad hoc cluster or not. If an ad hoc cluster of
sufficient size can be formed, the cluster data provider is run, following which
the ad hoc cluster is dissolved. If an ad hoc cluster could not be formed, then
clckd will try again later.

3.6.4 Performance Impact and Sleep Mode

When clckd is idle, the performance impact is negligible. The service will not
wake up if the current node load average is above a threshold value. This tech-
nique enforces that clckd only run data providers when the node is idle. Tip: These commands can be added to clus-

ter resource manager prologue and epilogue
scripts to force clckd to remain idle while a
job is running.

In addition, clckd can be sent a signal that will put the it into a “deep sleep”
mode. In this mode, while the clckd service is still running, it remains idle
regardless of the current load average. No data providers are executed, and this
clckd instance ignores requests by other clckd daemons to form ad hoc clusters.
This daemon will remain in “deep sleep” mode until another signal is passed to
it.

The clckd daemon can be put to sleep using the command service clckd
sleep.

And similarly, it can be brought out of sleep and made to resume its normal
functionality with the command service clckd wakeup.

Note that the above operations can only be performed by a privileged user.

3.7 Data Collection Use Cases

This section describes the three most typical data collection use cases, as well as
their advantages and disadvantages.

3.7.1 Completely On-Demand Data Collection

In this case, the clck-collect program is manually invoked to collect data from
the cluster (see section 3.2 for specifics). This provides complete control over the
what, where, and when of data collection. On-demand data collection may be
invoked by any user, and by default, the resulting database is specific to the user
($HOME/.clck/3.0.1/clck.db). Intel® Cluster Checker 2.x transition note:

This use case is the most similar to how ver-
sion 2 operates.

The primary disadvantage of completely on-demand data collection is that
the value of the analysis will be lessened if the data is collected too infrequently.
One way to address this is to always collect fresh data prior to running the anal-
ysis.

Completely on-demand data collection is the default use case.

3.7.2 On-DemandDataCollectionwith aSharedDatabase

On a cluster with multiple users of Intel® Cluster Checker, it is inefficient for
each user to have their own private database. One way to setup a common,
shared database would be to modify the <database_file> setting in /opt/
intel/clck/3.0.1/etc/clckd.xml to use a file in shared, global writable lo-
cation. Tip: In asynchronous mode, or on-demand

mode with a shared database, the default
database file location should be changed
from $HOME/.clck/3.0.1/clck.db to a
shared location such as /var/db/clck/
clck.db.

14 Data Collection

Starting the clck-serverd service on the head node (see section 3.6 for
specifics) takes this one step further. Data is still collected on-demand using
the clck-collect program, but this service aggregates the collected data from
multiple users and centralizes writing to the database. Tip: In this case, the -z command line option

of clck-collect must be used. See section
3.2 for more information.

However, the clck-serverd service must be initially setup by a privileged
user, but can run under any user account.

3.7.3 Completely Asynchronous Data Collection
The asynchronous data collection use case completely automates the data collec-
tion process. This process is also highly scalable since data collection can occur
asynchronously. The clckd service is continuously running on all the compute
nodes. The service periodically wakes up, collects new data and publishes it to
the central database, then goes back to sleep. This guarantees a steady stream of
fresh data for the analysis phase. Tip: While in this use case the primary data

collection mechanism is assumed to be the
clckd service, data can also be collected on-
demand, e.g, to update a particular database
entry after resolving a issue but before the
next asynchronous update has occurred.

Tip: The clckd service can be placed in
“deep sleep” mode to avoid this issue. How-
ever, the service must be periodically manu-
ally woken up otherwise no data will be col-
lected at all. See section 3.6.4 for more infor-
mation.

The primary disadvantage of completely asynchronous data collection is that
it can potentially interfere with jobs. While the idle clckd service load is neg-
ligible and the service will defer waking up to collect data if it detects a node is
busy, it does not currently communicate with the cluster resource manager to
reserve nodes and thus may still impact running jobs. In particular, if a node is
allocated to a job after clckd has woken up and started a performance bench-
mark, clckd will not be aware of this until after the benchmark has completed.
In the meantime, the benchmark will not only interfere with the job, but will also
produce invalid benchmark results that may lead to incorrect analysis.

The servicemust also be initially setup by a privileged user, but can run under
any user account.

15

Chapter 4

Analysis

4.1 Overview

Given a populated database (see Chapter 3), Intel® Cluster Checker analyzes the
data to identify issues, diagnose the problems, and in some cases, provide rec-
ommendations on how to repair the cluster. Invoke the clck-analyze program
to perform the analysis. The analysis evaluates the collected data using an em-
bedded expert system.

4.2 Running clck-analyze

A typical invocation of clck-analyze is: Without any command line arguments, all
of the nodes in the database are analyzed
using default settings. To analyze a subset
of nodes, or to assign node roles, a node-
file should be provided (see section 3.3). See
clck-analyze --help for more informa-
tion.

clck-analyze

The output will contain descriptions of any issues that were identified by the
analysis, including node(s) and the severity and confidence percentages.

<issue description>
[Id: <message identifier>]
[Severity: <percentage>; Confidence: <percentage>]
[N node(s): <node name(s)>]
[Database Row Id(s): <database row identifier list>]
[Remedy = <remedy description, if available>]

The message id is an unique identifier for the issue type. The id can be used
to suppress the issue, if desired (see section 4.8).

Values for severity range from 0 - 100. Higher severity values indicate a
higher significance of the identified issues on the cluster. Lower severity levels
indicate that the diagnosis is less of a problem.

Values for confidence range from 0 - 100. Higher confidence values indicate a
higher level of certainty of the diagnosis. Lower confidence values indicate that
the diagnosis is less certain.

The number and names of the nodes affected by the issue are shown. Node
names in parentheses indicate that the issue applies to a set of nodes, e.g., MPI
latency between a pair of nodes.

The database row id is a list of database entries containing the raw data that
led to the issue. Database row ids are only included when “debug” output is
enabled (see section 4.4).

Some issues may recommend a remedy to resolve the issue. Depending on the cluster configuration,
some remedies may not be appropriate. If
unsure, review any suggested remedies with
an expert before implementing them. Some
remedies may require privileged cluster ac-
cess.

Issues fall into one of three categories: diagnoses, diagnosed signs, and un-
diagnosed signs.

Diagnoses

16 Analysis

Diagnoses describe the root cause of an issue. For example, MPI perfor-
mance is substandard because some network setting is misconfigured. The
typical process to reach a diagnosis is by combining one or more signs, in
this example, a sign for substandard MPI performance and another sign
for a misconfigured network setting. By default, diagnoses are included in
the output.

Diagnosed signs
When a sign has contributed to a diagnosis, it is referred to as a diagnosed
sign. By default, diagnosed signs are not displayed in the output. Diag-
nosed sign output can be enabled using the -p diagnosed_signs com-
mand line option (see section 4.4).

Undiagnosed signs
Signs that have not contributed to a diagnosis are referred to as undiag-
nosed signs. For example, a node may be observed to be an outlier with
respect to memory bandwidth, but no reason for the substandard perfor-
mance could be found. By default, undiagnosed signs are included in the
output.

Each reported issue should be investigated, and either resolved or suppressed
(see section 4.8). Once the issue is resolved, fresh data should be collected and the
analysis repeated. When no issues are reported, the cluster has been successfully
verified with Intel® Cluster Checker.

4.3 Selecting Nodes

By default, all the nodes contained in the database will be analyzed. If a nodefile
is supplied, then the list of nodes contained in the nodefile will be used instead.
The nodefile contains a list of cluster node hostnames or IP addresses, one per
line. Additional, optional nodefile annotations can also be specified andmay alter The hostnames in the nodefile must cor-

respond to the hostname values in the
database. Partial hostnames in the node-
file will automatically be matched to host-
names in the database if they are identical
other than the suffix, e.g., a nodefile contain-
ing “node01” would match “node01.cluster”
in the database.

the analysis (see section 3.3), e.g., some checks only apply to compute nodes and
ignore non-compute nodes.

-f file / --nodefile file

Use the specified file for the list of nodes to analyze, overriding the database.

4.4 Configuration Options
Most of the command line options described
in this chapter can also be set in the config-
uration file. The configuration file variants
are not included here, but see the Reference
Guide for more information about the con-
figuration file options.

Command line configuration options supported by clck-analyze include:

-c file / --config file

Use the specified configuration file. The default is /opt/intel/clck/3.
0.1/etc/clck.xml.

-d / --debug
Enable “debug” output, i.e., print out the database row ids for each issue
(see section 4.2). Intel® Cluster Checker 2.x transition note:

The database entries provide nearly the same
information as the “debug” files. For a given
database row id, the corresponding database
entry can be viewed using the clckdb tool,
e.g., clckdb --rowid 17.

-D file / --db file

Use the specified database file. The default is $HOME/.clck/3.0.1/clck.
db.

-g / --no-color

-G / --color
Enable or disable color output. The default is to use color output.

Analysis 17

-o file / --logfile file

Output will be simultaneously printed to the terminal as well as the spec-
ified file.

-p type / --print type

-P type / --no-print type

Enable or disable output of the specified type. Type is one of diagnoses,
diagnosed_signs, or undiagnosed_signs. The options may be specified
multiple times to enable or disable more than one output type. The default
is to print diagnoses and undiagnosed signs, and not to print diagnosed
signs.

Run clck-analyze --help for additional command line options.

4.5 Mode Selection

Intel® Cluster Checker can be run in certification mode, compliance mode or
health mode.

In health mode, the functionality and uniformity of the cluster is checked.
Health mode is the default.

In compliance mode, Intel® Cluster Checker verifies that the requirements
specified by the Intel® Cluster Ready specification are met.

Certification mode is effectively the union of compliance and health modes.
A successful certification run should not be interpreted as certifying Intel® Clus-
ter Ready compliance as other requirements must also be met.

The mode can be selected on the clck-analyze command line using:

-m mode / --mode mode

Select the mode. Mode is certification, compliance, or health. The
default is health mode.

The Intel® Cluster Ready specification version can be set on the command
line using:

-C version / --icr version

Specify the Intel® Cluster Ready specification version. This option is only
relevant in certification or compliance mode. The only supported version
of the Intel® Cluster Ready architecture specification is 1.3.1. The default
is 1.3.1.

4.6 Check Selection

Intel® Cluster Checker contains multiple checks. By default, the analysis per-
formed is based on the list of checks defined in /opt/intel/clck/3.0.1/etc/
clck.xml. The set of checks can be changed by modifying the configuration file,
or by using the following command line options. The list of checks may be found
in Appendix B.

-e check / --exclude check

Exclude the specified check. This option may specified more than once to
exclude multiple checks.

-i check / --include check

Include the specified check, in addition to the checks defined in /opt/
intel/clck/3.0.1/etc/clck.xml. This option may be specified more
than once to include multiple checks.

18 Analysis

-I check / --include_only check Tip: To check a single aspect of a cluster,
combine exclusive includes with the ability
to collect data using pre-defined sets (section
3.4). E.g., clck-collect -f nodefile -s
foo && clck-analyze -I foo, where foo
is the name of the check.

Exclusively include the specified check, excluding the checks defined in
/opt/intel/clck/3.0.1/etc/clck.xml. This option may be specified
more than once to exclusively include multiple checks.

4.7 Filtering

When troubleshooting an issue, it can be useful to filter them so that only the
issue at hand is displayed. To efficiently triage issues, a filter based on severity
can also be useful.

Several command line options are available to filter the reported issues, in-
cluding:

-N node / --node-exclude node

Exclude all issues for the specified node.

-n node / --node-include node

Include only issues for the specified node.

-x severity / --min-severity severity

Exclude all issues with a severity level less than the value specified.

4.8 Suppressions
Intel® Cluster Checker 2.x transition note:
Suppressions can be used to achieve similar
functionality to the exclude_module capa-
bility.

In some cases, while the diagnosis may be correct, the behavior is actually in-
tended and should not be flagged. Such issues can be suppressed by adding an
entry to the configuration file.

The base suppression format is:

<configuration>
...
<suppressions>
<suppress>

<confidence> </confidence>
<id> </id>
<node_id> </node_id>
<severity> </severity>

</suppress>
...

</suppressions>
...

</configuration>

Multiple suppressions may be specified.

<confidence> num </confidence>

Suppress all issues with a confidence level less than the specified value.
The default is 0.

<id> string </id>

Suppress all issues matching the specified message id string. The default
is empty, meaning suppress all message ids that match the other tags.

<node_id> hostname </node_id>

Suppress all issues corresponding to the specified node. The default is
empty, meaning suppress all nodes that match the other tags.

Analysis 19

<severity> num </severity>

Suppress all issues with a severity level less than the specified value. The
default is 0.

If a tag is omitted, then the default value is used. There is implicit AND logic
between tags within a suppression.

The following example will suppress all issues from node4 as well as any
issues with message id example-id and with a confidence level of less than 50%
on any node.

<configuration>
...
<suppressions>
<suppress>

<node_id>node4</node_id>
</suppress>
<suppress>

<confidence>50</confidence>
<id>example-id</id>

</suppress>
</suppressions>
...

</configuration>

20

Appendix A

Database Schema

The database consists of a single table named clck_1. The table contains columns
described in Table A.1.

Name SQLite Type Description
rowid INTEGER Unique row ID
row_timestamp INTEGER Timestamp when the row was inserted

(seconds since the UNIX epoch)
Provider TEXT Data provider name
Hostname TEXT Hostname of the node where the data

provider ran
num_nodes INTEGER Number of nodes used by the data provider
node_names TEXT Comma separated list of nodes used by the

data provider. Empty if num_nodes = 1.
Exit_status INTEGER Exit status of the data provider
Timestamp INTEGER Timestamp when the data provider started

(seconds since the UNIX epoch)
Duration REAL Data provider walltime (seconds)
Encoding INTEGER Encoding format of the STDOUT and

STDERR columns. 0 = no encoding, 1 =
base64 encoding.

Stdout_size INTEGER Standard output size (number of bytes)
STDOUT BLOB Data provider standard output
Stderr_size INTEGER Standard error size (number of bytes)
STDERR BLOB Data provider standard error
OptionID TEXT The ID of the option set with which the

provider was run
Version INTEGER Output format version of the data provider

Table A.1 – Database schema.

The data definition language definition of the database is:

CREATE TABLE clck_1 (
rowid INTEGER PRIMARY KEY,
row_timestamp INTEGER DEFAULT (strftime('%s', 'now')),
Provider TEXT,
Hostname TEXT,
num_nodes INTEGER,
node_names TEXT,
Exit_status INTEGER,
Timestamp INTEGER,
Duration REAL,
Encoding INTEGER,
Stdout_size INTEGER,
STDOUT BLOB,

Database Schema 21

Stderr_size INTEGER,
STDERR BLOB,
OptionID TEXT,
Version INTEGER

);

The Intel® Cluster Checker database is a standard SQLite* database and any
SQLite* compatible tool may be used to browse the database contents. In addi-
tion, the clckdb utility is provided with Intel® Cluster Checker (see clckdb -h
for more information).

22

Appendix B

List of Checks

Check Description Default
State

all_to_all IP address consistency Enabled
cpu Intel® Cluster Ready CPU compliance Enabled
dgemm Floating point performance Enabled
environment Environment variables Enabled
ethernet Ethernet driver uniformity and wellness Enabled
heartbeat Verify data is recent Enabled
hpl High Performance Linpack* Enabled
icr_cluster Intel® Cluster Ready minimum node

count compliance
Enabled

icr_version Intel® Cluster Ready version compli-
ance

Enabled

imb_pinpgong MPI performance Enabled
infiniband InfiniBand* uniformity and wellness Enabled
intel_cluster_runtimes Intel® Cluster Ready runtime library

compliance
Enabled

iozone Disk I/O performance Enabled
java Java* uniformity and functionality Enabled
kernel Linux* kernel Enabled
kernel_param Kernel parameter uniformity Enabled
libraries Intel® Cluster Ready runtime library

compliance
Enabled

lshw Hardware uniformity Enabled
memory Memory compliance Enabled
miccheck Intel® Xeon Phi™ coprocessor unifor-

mity and wellness
Enabled

micinfo Intel® Xeon Phi™ coprocessor unifor-
mity and wellness

Enabled

mount Mount point compliance and uniformity Enabled
mpi_local Single-node MPI functionality Enabled
mpi_internode Multi-node MPI functionality Enabled
ntp Clock synchronization Enabled
offload_phi Intel® Xeon Phi™ coprocessor function-

ality
Enabled

perl Perl* compliance, uniformity, and func-
tionality

Enabled

process Process table Enabled
python Python* compliance, uniformity, and

functionality
Enabled

rpm RPM uniformity Enabled
shells Shell compliance Enabled

List of Checks 23

Check Description Default
State

storage Disk capacity Enabled
stream Memory bandwidth performance Enabled
tcl Tcl compliance, uniformity, and func-

tionality
Enabled

x11_tools X11 tool compliance Enabled

	Introduction
	What is Intel® Cluster Checker?
	Key Concepts

	Getting Started
	Data Collection
	Overview
	Running clck-collect
	Selecting Nodes
	Node Roles
	Subclusters

	Selecting Data Providers
	Other Configuration Options
	Asynchronous Data Collection
	Setting Up the Daemons
	Intel® Manycore Platform Software Stack
	RedHat Enterprise Linux* 6 and derivatives
	SUSE Linux Enterprise Server* 11 and derivatives
	systemd Based Linux* Distributions

	Discovery and Data Aggregation
	Ad Hoc Clusters
	Performance Impact and Sleep Mode

	Data Collection Use Cases
	Completely On-Demand Data Collection
	On-Demand Data Collection with a Shared Database
	Completely Asynchronous Data Collection

	Analysis
	Overview
	Running clck-analyze
	Selecting Nodes
	Configuration Options
	Mode Selection
	Check Selection
	Filtering
	Suppressions

	Database Schema
	List of Checks

